n2+7n+16 không chia hết cho 25
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow n-3\in\left\{-1;1;11\right\}\)
hay \(n\in\left\{2;4;14\right\}\)
Lời giải:
a.
$3n+2\vdots n-3$
$3(n-3)+11\vdots n-3$
$\Rightarrow 11\vdots n-3$
$\Rightarrow n-3\in\left\{1; -1; 11; -11\right\}$
$\Rightarrow n\in\left\{4; 2; 14; -8\right\}$
Vì $n$ tự nhiên nên $n\in\left\{4;2;14\right\}$
b.
$n^2+7n+9\vdots n+7$
$n(n+7)+9\vdots n+7$
$\Rightarrow 9\vdots n+7$
$\Rightarrow n+7\in\left\{1; -1; 3; -3; 9; -9\right\}$
$\Rightarrow n\in\left\{-6; -8; -4; -10; 2; -16\right\}$
Vì $n$ tự nhiên nên $n=2$
a: \(\Leftrightarrow n-3\in\left\{-1;1;11\right\}\)
hay \(n\in\left\{2;4;14\right\}\)
\(\Rightarrow n\left(n+7\right)+9⋮n+7\\ \Rightarrow n+7\inƯ\left(9\right)=\left\{1;3;9\right\}\\ \Rightarrow n=2\left(n\in N\right)\)
Rút gọn được n 3 – n. Biến đổi thành Q = n(n – 1)(n + 1). Ba số nguyên liên tiếp trong đó sẽ có 1 số chia hết cho 2 và 1 số chia hết cho 3, vì Q ⋮ 6.
a: 7n chia hết cho 3
mà 7 không chia hết cho 3
nên \(n⋮3\)
=>\(n=3k;k\in Z\)
b: \(-22⋮n\)
=>\(n\inƯ\left(-22\right)\)
=>\(n\in\left\{1;-1;2;-2;11;-11;22;-22\right\}\)
c: \(-16⋮n-1\)
=>\(n-1\inƯ\left(-16\right)\)
=>\(n-1\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)
=>\(n\in\left\{2;0;3;-1;5;-3;9;-7;17;-15\right\}\)
d: \(n+19⋮18\)
=>\(n+1+18⋮18\)
=>\(n+1⋮18\)
=>\(n+1=18k\left(k\in Z\right)\)
=>\(n=18k-1\left(k\in Z\right)\)
16 + 7n chia hết cho n + 1
=> 9 + 7 + 7n chia hết cho n + 1
=> 9 + 7(n + 1) chia hết cho n + 1
=> 9 chia hết cho n + 1 (Vì 7(n + 1) chia hết cho n + 1)
=> n + 1 E Ư(9)
=> n + 1 E {-1; 1; -3; 3; -9; 9}
=> n E {-2; 0; -4; 2; -10; 8}
Vậy.......
Ta có:16+7n=9+7+7n=9+7.1+7.n=9+7.(1+n)
Mà 7.(1+n) chia hết cho n+1 nên để 16+7n chia hết cho n+1 thì 9 chia hết cho n+1
=>n+1\(\in\)Ư(9)={-9,-3,-1,1,3,9}
Xét n+1=-9
=>n=-10
n+1=-3
=>n=-4
n+1=-1
=>n=-2
n+1=1
=>n=0
n+1=3
=>n=2
n+1=9
=>n=8
Vậy n\(\in\){-10,-4,-2,0,2,8} thỏa mãn
Ta có ; 16+ 7n chia hết cho n+1
suy ra 7n + 16 chia hết cho n+1
7n + 7 + 9 chia hết cho n +1
suy ra 9 chia hết cho n+1 ( vì 7n +7 chia hết cho n+1)
suy ra n+1 thuộc Ư( 9 ) = { -9; -3; -1; 1; 3; 9}
n+1 | -9 | -3 | -1 | 1 | 3 | 9 |
---|---|---|---|---|---|---|
n | -10 | -4 | -2 | 0 | 2 | 8 |
Vậy với n thuộc {-10; -4; -2; 0; 2; 8} thì 7n+16 chia hết cho n+1.
+) \(3\left(n+1\right)+11⋮n+3\)
\(11⋮n+3\)
\(n+3\inƯ\left(11\right)=\left\{1;11\right\}\)
\(n=8\)
+) \(3n+16⋮n+4\)
\(3\left(n+4\right)+4⋮n+4\)
\(4⋮n+4\)
\(n+4\inƯ\left(4\right)=\left\{1;2;4\right\}\)
\(n=0\)
+) \(28-7n⋮n+3\)
\(49-7\left(n+3\right)⋮n+3\)
\(49⋮n+3\)
\(n+3\inƯ\left(49\right)=\left\{1;7;49\right\}\)
\(n\in\left\{4;46\right\}\)