K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2019

\(D=ax^2+bx+c\)

\(D=a\left(x^2+\frac{bx}{a}+\frac{c}{a}\right)\)

\(D=a\left(x^2+2.x.\frac{b}{2a}+\frac{b^2}{4a^2}+\frac{c}{a}-\frac{b^2}{4a^2}\right)\)

\(D=a\left[\left(x+\frac{b}{2a}\right)^2+\frac{4ca-b^2}{4a^2}\right]\)

\(D=a\left(x+\frac{b}{2a}\right)^2+\frac{4ca-b^2}{4a}\ge\frac{4ca-b^2}{4a}\forall x;a>0\)

Dấu " = " xảy ra \(\Leftrightarrow x=-\frac{b}{2a}\)

Chúc bạn học tốt !!!

9 tháng 6 2019

\(D=ax^2+bx+c\)

\(D=a\left(x^2+\frac{bx}{a}+\frac{c}{a}\right)\)

\(D=a\left(x^2+2\cdot x\cdot\frac{b}{2a}+\frac{b^2}{4a^2}+\frac{c}{a}-\frac{b^2}{4a^2}\right)\)

\(D=a\left[\left(x+\frac{b}{2a}\right)^2+\frac{4ca-b^2}{4a^2}\right]\)

\(D=a\left(x+\frac{b}{2a}\right)^2+\frac{4ca-b^2}{4a}\ge\frac{4ca-b^2}{4a}\forall x;a>0\)

Dấu "=" xảy ra \(\Leftrightarrow x=\frac{-b}{2a}\)

9 tháng 6 2019

Ta có \(x^2\ge0\)

\(\Rightarrow ax^2\ge0\left(a>0\right)\)

nên để \(ax^2\)nhỏ nhất thì \(x=0\)

Khi đó \(GTNN_D=a.0^2+b.0+c=c\)

11 tháng 6 2019

Bài 1 undefined

11 tháng 6 2019

Bài 1 :

undefined

20 tháng 1 2020

phương trình delta

20 tháng 1 2020

là ntn bn

12 tháng 1 2017

a)x2>-1

=>x>-1

b)\(\hept{\begin{cases}x-1< 0\\x-2< 0\end{cases}=>\hept{\begin{cases}x< 1\\x< 2\end{cases}}}\)

c) x3=0

=>x=0

d) chịu

e) x4=16

=>x=2

bài nào mk giải cho bợn đều đúng.....

nhớ tích mk nha

12 tháng 1 2017

E,x^4=16=>x=2

C,x^3=0=>x=0

làm đc 2 câu, hình như bnaj thiếu đk của bài

7 tháng 4 2019

\(P=ax^2+bx+c=a\left(x^2+\frac{b}{a}x\right)+c=a\left(x+\frac{b}{2a}\right)^2+c-\frac{b^2}{4a}\)

Đặt \(c-\frac{b^2}{4a}=k.\)Do \(\left(x+\frac{b}{2a}\right)^2\ge0\)nên:

- Nếu a > 0 thì \(a\left(x+\frac{b}{2a}\right)^2\ge0\). Do đó \(P\ge k\)

min P = k khi và chỉ khi \(x=-\frac{b}{2a}\)

- Nếu a < 0 thì \(a\left(x+\frac{b}{2a}\right)^2\le0\). Do đó \(P\le k\)

max P = k khi và chỉ khi \(x=-\frac{b}{2a}\)

5 tháng 1 2017

áp dụng bđt bunhiacopxki 

(a^2+b^2)(1^2+1^2) >= (a.1+b.1)^2 = (a+b)^2=4

=>a^2+b^2 >= 4/2=2 

dấu "=" xảy ra <=> a=b,mà a+b=2=>a=b=1

Vậy minD=2 khi a=b=1