cm bất đẳng thức sau vs x, y, z>0
X^2+y^2+z^2>_xy+yz+zx
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biến đổi tương đương:
\(\Leftrightarrow4x^2+4y^2+4z^2\ge2x^2+2y^2+2z^2+2xy+2yz+2zx\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) (luôn đúng)
Dấu "=" xảy ra khi \(x=y=z\)
A no thơ quay nhưng lại không hay:P(Another way)
\(BĐT\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\) (biến đổi tương đương thôi)
\(\Leftrightarrow\frac{3}{4}\left(x-y\right)^2+\frac{1}{4}\left(x+y-2z\right)^2\ge0\) (true)
Đẳng thức xảy ra khi x =y = z
P/s: cách này làm màu thôi :D
Biến đổi tương đương:
\(3x^2+3y^2+3z^2\ge x^2+y^2+z^2+2xy+2yz+2zx\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) (luôn đúng)
Dấu "=" xảy ra khi \(x=y=z\)
Dự đoán đẳng thức xảy ra khi x = y = z = 1.
Đặt x = 1 + a ; y = 1 + b , ( a , b $\in$∈ R ). Từ giả thiết suy ra z = 1 - a - b.
Ta có:
$x^2+y^2+z^2+xy+yz+zx$x2+y2+z2+xy+yz+zx$=\left(1+a\right)^2+\left(1+b\right)^2+\left(1-a-b\right)^2+\left(1+a\right)\left(1+b\right)+\left(1+b\right)\left(1-a-b\right)+\left(1-a-b\right)\left(1+a\right)=\left(a+\frac{b}{2}\right)^2+\frac{3b^2}{4}+6\ge6.$=(1+a)2+(1+b)2+(1−a−b)2+(1+a)(1+b)+(1+b)(1−a−b)+(1−a−b)(1+a)=(a+b2 )2+3b24 +6≥6.
Đẳng thức xảy ra khi và chỉ khi.
$b=0;a+\frac{b}{2}=0\Leftrightarrow a=0;b=0\Leftrightarrow x=y=z=1.$b=0;a+b2 =0⇔a=0;b=0⇔x=y=z=1.
\(VT=\left(x+y+z\right)^2-x^2-y^2-z^2\)
\(=\left[\left(x+y\right)+z\right]^2-x^2-y^2-z^2\)
\(=\left(x+y\right)^2+2\left(x+y\right)z+z^2-x^2-y^2-z^2\)
\(=x^2+2xy+y^2+2xz+2yz+z^2-x^2-y^2-z^2\)
\(=2xy+2yz+2zx\)
\(=2\left(xy+yz+zx\right)\)
\(=VP\)
Vậy...
Xin lỗi mk viết nhầm
(x+y+z)2-x2-y2-z2 =x2+y2+z2+2(xy+yz+xz)-x2-y2-z2
(x+y+z)2-x2-y2-z2
=x2+y2+2(xy+yz+xz)-x2-y2-z2
= 2(xy+yz+xz)
Vậy hằng đẳng thức được chứng minh
Ta có:
\(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(=\left[\left(x+y\right)^3+z^3\right]-\left[3xy\left(x+y\right)+3xyz\right]\)
\(=\left(x+y+z\right)^3-3\left(x+y+z\right)\left(x+y\right).z-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2+2xy+2xz+2yx-3xz-3yz-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
=> \(x^3+y^3+z^3=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)+3xyz\)
BĐT \(\Leftrightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)(đúng)
Đẳng thức xảy ra khi x =y=z