Rút gọn
\(\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2}+\sqrt{3}}+\frac{2-\sqrt{3}}{\sqrt{2}+\sqrt{2}-\sqrt{3}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\sqrt{2+\sqrt{3}}=\frac{1}{\sqrt{2}}.\sqrt{4+2\sqrt{3}}=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{2}}=\frac{\sqrt{3}+1}{\sqrt{2}}\)
=> \(A=\frac{\frac{\sqrt{3}+1}{2\sqrt{2}}}{\frac{\sqrt{3}+1}{2\sqrt{2}}-\frac{2}{\sqrt{6}}+\frac{\sqrt{3}+1}{2\sqrt{6}}}=\frac{\frac{\sqrt{3}+1}{2\sqrt{2}}}{\frac{\sqrt{3}+1}{2\sqrt{2}}-\frac{\sqrt{3}}{2\sqrt{2}}+\frac{1}{2\sqrt{2}}}=\frac{\sqrt{3}+1}{2}\)
\(=\frac{\sqrt{3}+\sqrt{2}-1}{2+\sqrt{6}}+\frac{\sqrt{2}-\sqrt{3}}{\sqrt{2}+1}\left(\frac{2\sqrt{3}+\sqrt{18}+2\sqrt{3}-\sqrt{18}}{4-6}\right)-\frac{1}{\sqrt{2}}.\)
\(=\frac{\sqrt{3}+\sqrt{2}-1}{2+\sqrt{6}}-\frac{\sqrt{2}-\sqrt{3}}{\sqrt{2}+1}.\left(2\sqrt{3}\right)-\frac{1}{\sqrt{2}}\)
\(=\frac{\sqrt{3}+\sqrt{2}-1}{2+\sqrt{6}}-\frac{2\sqrt{6}-6}{\sqrt{2}+1}-\frac{1}{\sqrt{2}}\)
\(\frac{\sqrt{2-\sqrt{3}}}{2}:\left(\frac{\sqrt{2+\sqrt{3}}}{2}-\frac{2}{\sqrt{6}}+\frac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}\right).\)
\(=\frac{2\sqrt{2-\sqrt{3}}}{4}:\left(\frac{2\sqrt{2+\sqrt{3}}}{4}-\frac{2}{\sqrt{6}}+\frac{2\sqrt{2+\sqrt{3}}}{4\sqrt{3}}\right)\)
\(=\frac{\sqrt{4-2\sqrt{3}}}{4}:\left(\frac{\sqrt{4+2\sqrt{3}}}{4}-\frac{2}{\sqrt{6}}+\frac{\sqrt{4+2\sqrt{3}}}{4\sqrt{3}}\right)\)
\(=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}}{4}:\left[\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{4}-\frac{2}{\sqrt{6}}+\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{4\sqrt{3}}\right]\)
\(=\frac{\sqrt{3}-1}{4}:\left[\frac{\sqrt{6}\left(\sqrt{3}+1\right)}{4\sqrt{6}}-\frac{2.4}{4\sqrt{6}}+\frac{\sqrt{2}\left(\sqrt{3}+1\right)}{4\sqrt{6}}\right]\)
\(=\frac{\sqrt{3}-1}{4}:\frac{\sqrt{18}+\sqrt{6}-8+\sqrt{6}+\sqrt{2}}{4\sqrt{6}}\)
\(=\frac{\sqrt{3}-1}{4}.\frac{4\sqrt{6}}{\sqrt{2}\left(\sqrt{9}+2\sqrt{3}+1\right)}\)
\(=\frac{\sqrt{6}\left(\sqrt{3}-1\right)}{\sqrt{2}\left(\sqrt{3}+1\right)^2}=\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)^2}\)............
=\(\frac{\sqrt{4+2\sqrt{3}}}{2\sqrt{2}}:\left(\frac{\sqrt{4+2\sqrt{3}}}{2\sqrt{2}}-\frac{2}{\sqrt{6}}+\frac{\sqrt{4+2\sqrt{3}}}{2\sqrt{6}}\right)\)
=\(\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{2\sqrt{2}}:\left(\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{2\sqrt{2}}-\frac{2}{\sqrt{6}}+\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{2\sqrt{6}}\right)\)
=\(\frac{\sqrt{3}+1}{2\sqrt{2}}:\left(\frac{\sqrt{3}+1}{2\sqrt{2}}-\frac{2}{\sqrt{6}}+\frac{\sqrt{3}+1}{2\sqrt{6}}\right)\)
=\(\frac{\sqrt{3}+1}{2\sqrt{2}}:\frac{\sqrt{3}.\left(\sqrt{3}+1\right)-2.2+\sqrt{3}+1}{2\sqrt{6}}\)
=\(\frac{\sqrt{3}+1}{2\sqrt{2}.}.\frac{2\sqrt{6}}{2\sqrt{3}}=\frac{\sqrt{3}+1}{2}\)
bạn nhân cả tử và mẫu với căn 2 thì mẫu có hằng đẳng thức rồi trục căn thức
\(A=\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
\(=\frac{\sqrt{2}.\left(2+\sqrt{3}\right)}{2+\sqrt{4+2\sqrt{3}}}+\frac{\sqrt{2}.\left(2-\sqrt{3}\right)}{2-\sqrt{4-2\sqrt{3}}}\)
\(=\frac{\sqrt{2}.\left(2+\sqrt{3}\right)}{2+\sqrt{\left(\sqrt{3}+1\right)^2}}+\frac{\sqrt{2}.\left(2-\sqrt{3}\right)}{2-\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\frac{\sqrt{2}.\left(2+\sqrt{3}\right)}{2+\sqrt{3}+1}+\frac{\sqrt{2}\left(2-\sqrt{3}\right)}{2-\sqrt{3}+1}\)
\(=\sqrt{2}-\frac{\sqrt{2}}{3+\sqrt{3}}+\sqrt{2}-\frac{\sqrt{2}}{3-\sqrt{3}}\)
\(=2\sqrt{2}-\left(\frac{\sqrt{2}}{3+\sqrt{3}}+\frac{\sqrt{2}}{3-\sqrt{3}}\right)\)
\(=2\sqrt{2}-\frac{3\sqrt{2}-\sqrt{6}+3\sqrt{2}+\sqrt{6}}{6}\)
\(=2\sqrt{2}-\frac{6\sqrt{2}}{6}=2\sqrt{2}-\sqrt{2}=\sqrt{2}\)
- Biến đổi \(2+\sqrt{3}=\frac{4+2\sqrt{3}}{2}=\frac{\left(\sqrt{3}+1\right)^2}{2}\)
- Tương tự \(2-\sqrt{3}=\frac{\left(\sqrt{3}-1\right)^2}{2}\)
Vậy A \(=\frac{\left(\sqrt{3}+1\right)^2}{2\sqrt{2}+\sqrt{6}+\sqrt{2}}+\frac{\left(\sqrt{3}-1\right)^2}{2\sqrt{2}-\sqrt{6}+\sqrt{2}}\)
\(=\frac{\sqrt{3}+1+\sqrt{3}-1}{\sqrt{6}}=\sqrt{2}\)
\(\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2}+\sqrt{3}}+\frac{2-\sqrt{3}}{\sqrt{2}+\sqrt{2}-\sqrt{3}}\)
= \(\frac{2+\sqrt{3}}{2\sqrt{2}+\sqrt{3}}+\frac{2-\sqrt{3}}{2\sqrt{2}-\sqrt{3}}\)
= \(\frac{\left(2+\sqrt{3}\right)\left(2\sqrt{2}-\sqrt{3}\right)+\left(2-\sqrt{3}\right)\left(2\sqrt{2}+\sqrt{3}\right)}{\left(2\sqrt{2}+\sqrt{3}\right)\left(2\sqrt{2}-\sqrt{3}\right)}\)
= \(\frac{4\sqrt{2}-2\sqrt{3}+2\sqrt{6}-3+4\sqrt{2}+2\sqrt{3}-2\sqrt{6}-3}{\left(2\sqrt{2}\right)^2-\left(\sqrt{3}\right)^2}\)
= \(\frac{8\sqrt{2}-6}{-5}\)
Chúc bạn học tốt !!!