Tính A
\(A=1+2^2+3^2+...+100^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
A = 1 + 3 + 32 + ... + 3100
=> 3A = 3 + 32 + ... + 3101
=> 2A = 3101 - 1
=> A = \(\frac{3^{101}-1}{2}\)
B = 1 + 42 + 44 + ... + 4100
=> 8B = 42 + 44 + ... + 4102
=> 7B = 4102 - 1
=> B = \(\frac{4^{102}-1}{7}\)
Bài 2:
a) S1 = 22 + 42 + ... + 202
=> S1 = 22(1+22+...+102)
=> S1 = 22.385
=> S1 = 1540
b) S2 = 1002 + 2002 + ... + 10002
=> S2 = 1002(1+22+...+102)
=> S2 = 1002.385
=> S2 = 3850000
A=1+3/2^3+4/2^4+5/2^5+...100/2^100
1/2*A = 1/2 + 3/2^4 + 4/2^5 +....+ 99/2^100 + 100/2^101
A- A/2 = 1/2A =1/2 + 3/2^3 + 1/2^4 +...+1/2^100 - 100/2^101=
= [1/2+1/2^2 +1/2^3 +...+1/2^100] -100/2^101 (Do 3/2^3 = 1/2^2 +1/2^3)
=[1-(1/2)^101]/(1-1/2) -100/2^101 =
=(2^101 -1)/2^100 - 100/2^101
=> A= (2^101 -1)/2^99 - 100/2^100
A=1+3/2^3+4/2^4+5/2^5+...100/2^100
1/2*A = 1/2 + 3/2^4 + 4/2^5 +....+ 99/2^100 + 100/2^101
A- A/2 = 1/2A =1/2 + 3/2^3 + 1/2^4 +...+1/2^100 - 100/2^101=
= [1/2+1/2^2 +1/2^3 +...+1/2^100] -100/2^101 (Do 3/2^3 = 1/2^2 +1/2^3)
=[1-(1/2)^101]/(1-1/2) -100/2^101 =
=(2^101 -1)/2^100 - 100/2^101
=> A= (2^101 -1)/2^99 - 100/2^100
A=1+3/2^3+4/2^4+5/2^5+...100/2^100
1/2*A = 1/2 + 3/2^4 + 4/2^5 +....+ 99/2^100 + 100/2^101
A- A/2 = 1/2A =1/2 + 3/2^3 + 1/2^4 +...+1/2^100 - 100/2^101=
= [1/2+1/2^2 +1/2^3 +...+1/2^100] -100/2^101 (Do 3/2^3 = 1/2^2 +1/2^3)
=[1-(1/2)^101]/(1-1/2) -100/2^101 =
=(2^101 -1)/2^100 - 100/2^101
=> A= (2^101 -1)/2^99 - 100/2^100
Ta có 1/n(1+2+3+...+n)
Áp dụng công thức 1+2+3+...+n =n (n+1) /2
Nên 1/n(1+2+3+...+n) =1/n[n (n+1)/2]=n (n+1) /2n
=>1+3/2+4/2+...+101/2
=1+[(2+3+4+...+101)/2)-1 (vì mình thêm vào 2/2 nên phải trừ 1)
=5150 :)))))))))
Phương pháp:
Ta có: n2 – n = n.(n – 1)
=> n2 = n.(n – 1) + n = (n – 1).n + n
Giải:
A = 1 + 22 + 32 +...+ 1002
= 1 + 1.2 + 2 + 2.3 + 3 + … + 98.99 + 99 + 99.100 + 100
= (1.2 + 2.3 + … + 99.100) + (1 + 2 + 3 + … + 100)
= 99.100.101 : 3 + 101.100 : 2
= 100.101.33 + 101.50
= 101.50.(66 + 1)
= 101.55.67
=
( Do thiếu đáp án nên up lại)
Phương pháp:
Ta có: n2 – n = n.(n – 1)
=> n2 = n.(n – 1) + n = (n – 1).n + n
Giải:
A = 1 + 22 + 32 +...+ 1002
= 1 + 1.2 + 2 + 2.3 + 3 + … + 98.99 + 99 + 99.100 + 100
= (1.2 + 2.3 + … + 99.100) + (1 + 2 + 3 + … + 100)
= 99.100.101 : 3 + 101.100 : 2
= 100.101.33 + 101.50
= 101.50.(66 + 1)
= 101.55.67
= 372185