K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2018

\(a,A=-x^2-6x-10=-\left(x^2+6x+9\right)-1=-\left(x+3\right)^2-1\le-1\)

Dấu = xảy ra ⇔ x +3 =0 ⇔ x = -3

\(Max_A=-1\text{ ⇔}x=-3\)

\(b,B=12x-4x^2+3=-\left(4x^2-12x+9\right)+12=-\left(2x-3\right)^2+12\le12\)

Dấu = xảy ra \(\Leftrightarrow2x-3=0\Leftrightarrow x=\dfrac{3}{2}\)

\(Max_B=12\text{ ⇔}x=\dfrac{3}{2}\)

\(c,8x-8x^2+3=-8\left(x^2-x+\dfrac{1}{4}\right)+5=-8\left(x-\dfrac{1}{2}\right)^2+5\le5\)

\(d,-x^2-8x+2018-y^2+4y\)

\(=-\left(x^2+8x+16\right)-\left(y^2-4y+4\right)+2038\le2038\)

\(e,-4x^4-12x^2+11=-\left(4x^4+12x^2+9\right)+20=-\left(2x^2+3\right)^2+20\le20\)

\(f,C=x-\dfrac{x^2}{4}\Rightarrow4C=4x-x^2\)\(=-\left(x^2-4x+4\right)+4=-\left(x-2\right)^2+4\)

\(\Rightarrow C=-\dfrac{\left(x-2\right)^2}{4}+1\le1\)

\(g,D=x-\dfrac{9x^2}{25}\Rightarrow25D=-\left(9x^2-25x\right)=-\left(9x^2-2.3x.\dfrac{25}{6}+\dfrac{625}{36}\right)+\dfrac{625}{36}=-\left(3x-\dfrac{25}{6}\right)^2+\dfrac{625}{36}\)

\(\Rightarrow D=\dfrac{-\left(3x-\dfrac{25}{6}\right)^2}{25}+\dfrac{25}{36}\le\dfrac{25}{36}\)

AH
Akai Haruma
Giáo viên
7 tháng 7 2019

5.

\(4x^5y^2+8x^4y^3+4x^3y^4=4x^3y^2(x^2+2xy+y^2)\)

\(=4x^3y^2(x+y)^2\)

9.

\(4x^5y^2+16x^4y^2-6x^3y^2=2x^3y^2(2x^2+4x-3)\)

13.

\(-3x^4y+6x^3y-3x^2y=-3x^2y(x^2-2x+1)=-3x^2y(x-1)^2\)

17.

\(8x^3-8x^2y+2xy^2=2x(4x^2-4xy+y^2)\)

\(=2x[(2x)^2-2.2x.y+y^2]=2x(2x-y)^2\)

AH
Akai Haruma
Giáo viên
7 tháng 7 2019

21.

\((a^2+4)^2-16a^2b^2=(a^2+4)^2-(4ab)^2\)

\(=(a^2+4-4ab)(a^2+4+4ab)\)

25.

\(100a^2-(a^2+25)^2=(10a)^2-(a^2+25)^2\)

\(=(10a-a^2-25)(10a+a^2+25)\)

\(=-(a^2-10a+25)(a^2+10a+25)=-(a-5)^2(a+5)^2\)

29.

\(25a^2b^2-4x^2+4x-1=25a^2b^2-(4x^2-4x+1)\)

\(=(5ab)^2-(2x-1)^2=(5ab-2x+1)(5ab+2x-1)\)

30 tháng 7 2023

1) \(4x^5y^2-8x^4y^2+4x^3y^2\)

\(=4x^3y^2\left(x^2-2x+1\right)\)

\(=4x^3y^2\left(x^2-2\cdot x\cdot1+1^2\right)\)

\(=4x^3y^2\left(x-1\right)^2\)

2) \(5x^4y^2-10x^3y^2+5x^2y^2\)

\(=5x^2y^2\left(x^2-2x+1\right)\)

\(=5x^2y^2\left(x^2-2\cdot x\cdot1+1^2\right)\)

\(=5x^2y^2\left(x-1\right)^2\)

3) \(12x^2-12xy+3y^2\)

\(=3\left(4x^2-4xy+y^2\right)\)

\(=3\left[\left(2x\right)^2-2\cdot2x\cdot y+y^2\right]\)

\(=3\left(2x-y\right)^2\)

4) \(8x^3-8x^2y+2xy^2\)

\(=2x\left(4x^2-4xy+y^2\right)\)

\(=2x\left[\left(2x\right)^2-2\cdot2x\cdot y+y^2\right]\)

\(=2x\left(2x-y\right)^2\)

5) \(20x^4y^2-20x^3y^3+5x^2y^4\)

\(=5x^2y^2\left(4x^2-4xy+y^2\right)\)

\(=5x^2y^2\left[\left(2x\right)^2-2\cdot2x\cdot y+y^2\right]\)

\(=5x^2y^2\left(2x-y\right)^2\)

1: 4x^5y^2-8x^4y^2+4x^3y^2

=4x^3y^2(x^2-2x+1)

=4x^3y^2(x-1)^2

2: \(=5x^2y^2\left(x^2-2x+1\right)=5x^2y^2\left(x-1\right)^2\)

3: \(=3\left(4x^2-4xy+y^2\right)=3\left(2x-y\right)^2\)

4: \(=2x\left(4x^2-4xy+y^2\right)=2x\left(2x-y\right)^2\)

5: \(=5x^2y^2\left(4x^2-4xy+y^2\right)=5x^2y^2\left(2x-y\right)^2\)

8 tháng 9 2021

\(a,2\left(x^3-1\right)-2x^2\left(x+2x^4\right)+x\left(4x^5+4\right)=6\\ \Leftrightarrow2x^3-2-2x^3-4x^6+4x^6+4x-6=0\\ \Leftrightarrow4x-8=0\\ \Leftrightarrow x=2\\ b,\left(2x\right)^2\left(4x-2\right)-\left(x^3-8x^3\right)=15\\ \Leftrightarrow4x^2\left(4x-2\right)+7x^3-15=0\\ \Leftrightarrow16x^3-8x^2+7x^3-15=0\\ \Leftrightarrow23x^3-8x^2-15=0\\ \Leftrightarrow23x^3-23x^2+15x^2-15x+15x-15=0\\ \Leftrightarrow\left(x-1\right)\left(23x^2+15x-15\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x\in\varnothing\left(23x^2+15x-15>0\right)\end{matrix}\right.\)

Bài 1: 

a: Ta có: \(2\left(x^3-1\right)-2x^2\left(2x^4+x\right)+x\left(4x^5+4\right)=6\)

\(\Leftrightarrow2x^3-2-4x^6-2x^3+4x^6+4x=6\)

\(\Leftrightarrow4x=8\)

hay x=2

b: Ta có: \(\left(2x\right)^2\cdot\left(4x-2\right)-\left(x^3-8x^3\right)=15\)

\(\Leftrightarrow4x^2\left(4x-2\right)-x^3+8x^3=15\)

\(\Leftrightarrow16x^3-8x^2+7x^3=15\)

\(\Leftrightarrow23x^3-8x^2-15=0\)

\(\Leftrightarrow23x^3-23x^2+15x^2-15=0\)

\(\Leftrightarrow23x^2\left(x-1\right)+15\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(23X^2+15x+15\right)=0\)

\(\Leftrightarrow x-1=0\)

hay x=1

6 tháng 4 2020

\(a.\left(8x^4-4x^3+x^2\right):2x^2=4x^2-2x+\frac{1}{2}\)

\(b.\left(2x^4-x^3+3x^2\right):\left(-\frac{1}{3x^2}\right)=-6x^6+3x^5-9x^4\)

\(c.\left(-18x^3y^5+12x^2y^2-6xy^3\right):6xy=-3x^2y^4+2xy-y^2\)

\(d.\left(\frac{3}{4x^3y^6}+\frac{6}{5x^4y^5}-\frac{9}{10x^5y}\right):-\frac{3}{5x^3y}=-\frac{5}{4y^5}-\frac{2}{xy^4}-\frac{3}{2x^2}\)

6 tháng 4 2020

Thank you

Tìm GTLN - GTNN của các biểu thức ?* bài 1: Tìm GTNN: a) A= (x - 5)² + (x² - 10x)² - 24 b) B= (x - 7)² + (x + 5)² - 3 c) C= 5x² - 6x +1 d) D= 16x^4 + 8x² - 9 e) A= (x + 1)(x - 2)(x - 3)(x - 6) f) B= (x - 2)(x - 4)(x² - 6x + 6) g) C= x^4 - 8x³ + 24x² - 8x + 25 h) D= x^4 + 2x³ + 2x² + 2x - 2 i) A= x² + 4xy + 4y² - 6x – 12y +4 k) B= 10x² + 6xy + 9y² - 12x +15 l) C= 5x² - 4xy + 2y² - 8x – 16y +83 m) A= (x - 5)^4 + (x - 7)^4 – 10(x - 5)²(x - 7)² + 9 * Bài 2: Tìm...
Đọc tiếp

Tìm GTLN - GTNN của các biểu thức ?

* bài 1: Tìm GTNN: 
a) A= (x - 5)² + (x² - 10x)² - 24 
b) B= (x - 7)² + (x + 5)² - 3 
c) C= 5x² - 6x +1 
d) D= 16x^4 + 8x² - 9 

e) A= (x + 1)(x - 2)(x - 3)(x - 6) 
f) B= (x - 2)(x - 4)(x² - 6x + 6) 
g) C= x^4 - 8x³ + 24x² - 8x + 25 
h) D= x^4 + 2x³ + 2x² + 2x - 2 

i) A= x² + 4xy + 4y² - 6x – 12y +4 
k) B= 10x² + 6xy + 9y² - 12x +15 
l) C= 5x² - 4xy + 2y² - 8x – 16y +83 

m) A= (x - 5)^4 + (x - 7)^4 – 10(x - 5)²(x - 7)² + 9 

* Bài 2: Tìm GTLN: 
a) M= -7x² + 4x -12 
b) N= -16x² - 3x +14 

c) M= -x^4 + 4x³ - 7x² + 12x -5 
d) N= -(x² + x – 2) (x² +9x+18) +27 

* Bài 3: 
1) Cho x - 3y = 1. Tìm GTNN của M= x² + 4y² 
2) Cho 4x - y = 5. Tìm GTNN của 3x²+2y² 
3) Cho a + 2b = 2. Tìm GTNN của a³ + 8b³ 

* Bài 4: Tìm GTLN và GTNN của các biểu thức: 
1) A = (3 - 4x)/(x² + 1) 
2) B= (8x + 3)/(4x² + 1) 
3) C= (2x+1)/(x²+2)

0
28 tháng 2 2021

 4-3=2( dân chơi mới hiểu)

22 tháng 6 2021

Chắc là viết thiếu số "1" đấy, sợ lớp 11 còn chưa làm được cơ

 

5 tháng 12 2018

\(\frac{5x+10}{4x-8}.\frac{4-2x}{x+2}=\frac{5\left(x+2\right)}{4\left(x-2\right)}.\frac{2\left(2-x\right)}{x+2}\)

\(=\frac{5}{4}.\frac{-2}{1}=\frac{-10}{4}\)