2n + 4.2n+1 = 9.43
3n +1 + 5.3 n+2 = 1296
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án:
12.2n+4.2n=9.5n12.2n+4.2n=9.5n
2n.(12+4) =9.5n2n.(12+4) =9.5n
2n.92 =9.5n2n.92 =9.5n
2n =9:92.5n2n =9:92.5n
2n =2.5n2n =2.5n
2n:5n =22n:5n =2
(25)n =2(25)n =2
Mà (25)n≠2(25)n≠2 nên không có giá trị nào của n thỏa mãn
Vậy n∈{∅}
T.I.C.K NHÉ
\(\lim\dfrac{\left(2n-1\right)\left(3n^2+2\right)^3}{-2n^5+4n^3-1}=\lim\dfrac{\left(\dfrac{2n-1}{n}\right)\left(\dfrac{3n^2+2}{n^2}\right)^3}{\dfrac{-2n^5+4n^3-1}{n^7}}\)
\(=\lim\dfrac{\left(2-\dfrac{1}{n}\right)\left(3+\dfrac{2}{n^2}\right)^3}{-\dfrac{2}{n^2}+\dfrac{4}{n^4}-\dfrac{1}{n^7}}=-\infty\)
\(\lim3^n\left(6.\left(\dfrac{2}{3}\right)^n-5+\dfrac{7n}{3^n}\right)=+\infty.\left(-5\right)=-\infty\)
\(9^{n+1}-5\cdot3^{2n}=324\)
\(9^n\cdot9-5\cdot9^n=324\)
\(9^n\cdot\left(9-5\right)=324\)
\(9^n\cdot4=324\)
\(9^n=324:4=81\)
\(9^n=9^2\)
\(n=2\)
a/ \(lim\left(\sqrt[3]{n-n^3}+n+\sqrt{n^2+3n}-n\right)\)
\(=lim\left(\frac{n}{\sqrt[3]{\left(n-n^3\right)^2}-n\sqrt[3]{\left(n-n^3\right)}+n^2}+\frac{3n}{\sqrt{n^2+3n}+n}\right)\)
\(=lim\left(\frac{1}{\sqrt[3]{n^3+2n+\frac{1}{n}}+\sqrt[3]{n^3-n}+n}+\frac{3}{\sqrt{1+\frac{3}{n}}+1}\right)=0+\frac{3}{1+1}=\frac{3}{2}\)
b/ \(lim\left(\frac{-2\sqrt{n}-4}{\sqrt{n-2\sqrt{n}}+\sqrt{n+4}}\right)=lim\left(\frac{-2-\frac{4}{\sqrt{n}}}{\sqrt{1-\frac{2}{\sqrt{n}}}+\sqrt{1+\frac{4}{n}}}\right)=-\frac{2}{1+1}=-1\)
c/ \(lim\left(\frac{3n^2}{\sqrt[3]{n^6+6n^5+9n^4}+\sqrt[3]{n^6+3n^5}+n^2}\right)=lim\left(\frac{3}{\sqrt[3]{1+\frac{6}{n}+\frac{9}{n^2}}+\sqrt[3]{1+\frac{3}{n}}+1}\right)=\frac{3}{3}=1\)
d/ \(lim\left(\sqrt[3]{n^3+6n}-n+n-\sqrt{n^2-4n}\right)=lim\left(\frac{6n}{\sqrt[3]{n^6+12n^4+36n^2}+\sqrt[3]{n^6+6n^4}+n^2}+\frac{4n}{n+\sqrt{n^2-4n}}\right)\)
\(=lim\left(\frac{6}{\sqrt[3]{n^3+12n+\frac{36}{n}}+\sqrt[3]{n^3+6n}+n}+\frac{4}{1+\sqrt{1-\frac{4}{n}}}\right)=0+\frac{4}{1+1}=2\)
e/ \(lim\left(\frac{-3.3^n+4.4^n}{5.3^n+\frac{3}{2}.4^n}\right)=lim\left(\frac{-3\left(\frac{3}{4}\right)^n+4}{5.\left(\frac{3}{4}\right)^n+\frac{3}{2}}\right)=\frac{0+4}{0+\frac{3}{2}}=\frac{8}{3}\)
f/ \(lim\left(\frac{9^n-5.5^n+7.7^n}{9.3^n+5^n+2.8^n}\right)=lim\left(\frac{1-5.\left(\frac{5}{9}\right)^n+7\left(\frac{7}{9}\right)^n}{9.\left(\frac{1}{3}\right)^n+\left(\frac{5}{9}\right)^n+2.\left(\frac{8}{9}\right)^n}\right)=\frac{1}{0}=+\infty\)
g/ \(lim\left(\frac{6.6^n+3^5.9^n}{3^3.9^n-\frac{1}{2}.4^n}\right)=lim\left(\frac{6\left(\frac{2}{3}\right)^n+3^5}{3^3-\frac{1}{2}\left(\frac{4}{9}\right)^n}\right)=\frac{3^5}{3^3}=9\)
A, \(5n=625\)
\(\Rightarrow n=625:5\)
\(\Rightarrow n=125\)
B, \(6^{2n}=1296\)
\(\Rightarrow6^{2n}=6^4\)
\(\Rightarrow2n=4\)
\(\Rightarrow n=2\)
C, \(6^{2n}>100\)
\(\Rightarrow\left(6^n\right)^2>10^2\)
\(\Rightarrow6^n>10\)
\(\Rightarrow n\ge2\) (mình không biết có đúng không)
Đ, \(25< 4n< 100\)
Vì \(4n⋮4\)
\(\Rightarrow4n\in\left\{28;32;36;...;92;96\right\}\)
\(\Rightarrow n\in\left\{7;8;9;...;23;24\right\}\)
62n=1296
62n=64
=>2n=4
n=4:2
n=2
Chúc bn học tốt