So Sánh:
a) 2100 và 550
b) 430 và 820
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, đề phải là A = 3^450 chứ bạn ơi
Có : A = 3^450 = (3^3)^150 = 27^150
B = 5^300 = (5^2)^150 = 25^150
Vì 27^150 > 25^150 => 3^450 > 5^300
Tk mk nha
a, Có : 2A = 2+2^2+.....+2^10
A = 2A-A = (2+2^2+.....+2^10)-(1+2+2^2+.....+2^9) = 2^10-1
=> A < B
a: \(11^{14}< 11^{15}\)
b: \(4^{300}=64^{100}\)
\(3^{400}=81^{100}\)
mà 64<81
nên \(4^{300}< 3^{400}\)
a, Có 3 = (3) = 9 và 2 = (2) = 8 => 3 > 2
b, Có 6 = (6) = 36 => 6 > 12
37,37 x 5959,59 = 37 x 1,01 x 59 x 101,01 = 37 x 59 x 1,01 x 101,01
59,59 x 3737,37 = 59 x 1,01 x 37 x 101,01 = 37 x 59 x 1,01 x 101,01
=> 37,37 x 5959,59 = 59,59 x 3737,37
Kick mik nha
a) Ta có: 3,23 < 3,32 nên -3,23 > -3,32
b) Ta có: \( - \frac{7}{3} = \frac{{ - 28}}{{12}}; - 1,25 = \frac{{ - 125}}{{100}} = \frac{{ - 5}}{4} = \frac{{ - 15}}{{12}}\)
Vì -28 < -15 nên \(\frac{{ - 28}}{{12}} < \frac{{ - 15}}{{12}}\) hay \( - \frac{7}{3}\) < -1,25
a) 536 và 1124
Ta có: 536= (53)12=12512 (1)
1124=(112)12=12112 (2)
Từ (1) và (2) => 536>1124
tương tự.....
Đáp án là :
câu 20 :625 < 1257
câu 21 :536 > 1124
câu 22 :32n < 23n
câu 23 :523 < 6.522
câu 24 :1124 <19920
câu 25 :399 > 112
a) 1024 9 = ( 2 10 ) 9 = 2 90 < 2 100
b) 6 . 5 29 > 5 . 5 29 = 5 30
c) 10 30 = ( 10 3 ) 10 = 1000 10 ; 2 100 = ( 2 10 ) 10 = 1024 10 n ê n 10 30 < 2 100 .
a) 3^2 và 3.2
3^2=9
3.2=6
-> 3^2>3.2
b)2^3 và 3^2
2^3=8
3^2=9
-> 2^3<3^2
c) 3^3 và 3^4
Vì hai số có cùng cơ số nên ta so sánh số mũ
3<4
-> 3^3<3^4
a)ta có 32=9 ; 3.2=6 => 32 > 3.2
b)ta có 23=8 ; 32=9 => 23 < 32
c) ta có 33 và 34
vì 2 số đều cùng 1 cơ số
mà cơ số đầu có số mũ = 3,cơ số còn lại có lũy thừa =4
=> 3<4
=> 33<34
a,Ta có:\(2=\sqrt{4}\)
Vì \(\sqrt{4}>\sqrt{3}\)
\(\Rightarrow2>\sqrt{3}\)
b,Ta có:\(6=\sqrt{36}\)
Vì \(\sqrt{36}< \sqrt{41}\)
\(\Rightarrow6< \sqrt{41}\)
c,Ta có:\(7=\sqrt{49}\)
Vì \(\sqrt{49}>\sqrt{47}\)
\(\Rightarrow7>\sqrt{47}\)
a) 2 =√4 > √3 ;
b) 6=√36 < √41 ;
c) 7=√49 > √47
a. \(2^{100}=\left(2^2\right)^{50}=4^{50}<5^{50}\)
Vậy \(2^{100}<5^{50}.\)
b. \(4^{30}=\left(2^2\right)^{30}=2^{60}\)(1)
\(8^{20}=\left(2^3\right)^{20}=2^{60}\)(2)
Từ (1) và (2) => \(4^{30}=8^{20}.\)