A= 1 + 4 + 9 + 16 + .... + 100
Giúp mình nha ! Please!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+2^2+2^4+...+2^{98}+2^{100}\)
=>\(2^2\cdot A=2^2+2^4+2^6+....+2^{98}+2^{100}+2^{102}\)
=>\(A\left(2^2-1\right)=2^2+2^4+...+2^{100}+2^{102}-1-2^2-2^4-...-2^{98}-2^{100}\)
=>\(3A=2^{102}-1\)
=>\(A=\dfrac{2^{102}-1}{3}\)
a, x-1:4/3+9/16=-5^(^laf mũ)2/4^2
x-1:4/3+9/16=25/16
x-1:4/3=25/16-9/16
x-1:4/3=1
x-1=1.4/3
x-1=4/3
x=4/3+1
x=7/3
kl:...................(hì tự viết nha mik lười viết)
b, 5/2x+2-31/2=1/6
5/2x+2=1/6+31/2
5/2x+2=16
5/2x=16-2
5/2x=14
x=14:5/2
x=28/5(vì 28 ko chia hết cho 5 nên mik viết như vậy)
*chúc bn học tốt nha* ^-^ *_*
\(A=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{100}+\frac{1}{121}\)
\(=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}+\frac{1}{11^2}\)
Ta có: \(\frac{1}{2^2}>\frac{1}{2}-\frac{1}{3}\)
\(\frac{1}{3^2}>\frac{1}{3}-\frac{1}{4}\)
\(\frac{1}{4^2}>\frac{1}{4}-\frac{1}{5}\)
................................
\(\frac{1}{10^2}>\frac{1}{10}-\frac{1}{11}\)
\(\frac{1}{11^2}>\frac{1}{11}-\frac{1}{12}\)
Cộng theo vế ta được:
\(A>\frac{1}{2}-\frac{1}{12}=\frac{5}{12}\)
Vậy \(A>\frac{5}{12}\)
\(=21\left(16+84\right)-100=21\cdot100-100=100\left(21-1\right)=100\cdot20=2000\)
a)
\(\left(x-15\right)⋮\left(x+2\right)\)
\(\Rightarrow x+2-17⋮\left(x+2\right)\)
\(\Rightarrow-17⋮\left(x+2\right)\Rightarrow\left(x+2\right)\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\)
\(\Leftrightarrow x\in\left\{-1;-3;15;-19\right\}\)
b)
\(\left(3x+16\right)⋮\left(x+1\right)\)
\(\Rightarrow3.\left(x+1\right)+13⋮\left(x+1\right)\)
\(\Rightarrow13⋮\left(x+1\right)\Rightarrow\left(x+1\right)\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
\(\Leftrightarrow x\in\left\{0;-2;-14;12\right\}\)
=385
o0o Hết o0o
hc tốt!