cho 1/x + 1/y + 1/z=0 (vs x;y;z khác 0). tính giá trị biểu thức y*z/x^2 + x*z/y^2 + x*y/z^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x+y+z=0
nên x+y=-z; y+z=-x; x+z=-y
\(\left(1+\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1+\dfrac{z}{x}\right)\)
\(=\dfrac{x+y}{y}\cdot\dfrac{y+z}{z}\cdot\dfrac{x+z}{x}=-1\)
Ta có: \(P=\dfrac{x}{x+1}+\dfrac{y}{y+1}+\dfrac{z}{z+1}\)
\(=\dfrac{x+1-1}{x+1}+\dfrac{y+1-1}{y+1}+\dfrac{z+1-1}{z+1}\)
\(=3-\left(\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\right)\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\ge\dfrac{9}{x+y+z+3}=\dfrac{9}{4}\)
\(\Rightarrow P\le\dfrac{3}{4}\)
Đẳng thức xảy ra khi \(x=y=z=\dfrac{1}{3}\)
P/s: bài này có max ko có min vì khi cho hai trong ba số tiến gần đến không thì giá trị của biểu thức ngày càng nhỏ
BĐT: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
Nếu ko bạn có thể làm theo AM-GM:
\(\frac{1}{1+x}+\frac{1+x}{4}\ge2\sqrt{\frac{1+x}{4\left(x+1\right)}}=1\)
Tương tự: \(\frac{1}{1+y}+\frac{1+y}{4}\ge1\) ; \(\frac{1}{1+z}+\frac{1+z}{4}\ge1\)
Cộng vế với vế:
\(A+\frac{3+x+y+z}{4}\ge3\Rightarrow A\ge3-\frac{3+x+y+z}{4}\ge3-\frac{3+3}{4}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(x=y=z=1\)
\(A=\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{9}{1+x+1+y+1+z}=\frac{9}{3+x+y+z}\ge\frac{9}{3+3}=\frac{3}{2}\)
\(A_{min}=\frac{3}{2}\) khi \(x=y=z=1\)
Có \(x-y-z=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-z=y\\x-y=z\\z+y=x\end{matrix}\right.\Rightarrow y-x=-z\)
Có x,y,z ≠ 0
\(\Rightarrow A=\left(1-\dfrac{z}{x}\right)\left(1-\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\)
\(\Rightarrow A=\left(\dfrac{x-z}{x}\right)\left(\dfrac{y-x}{y}\right)\left(\dfrac{z+y}{z}\right)\)
\(\Rightarrow A=\left(\dfrac{y}{x}\right)\left(\dfrac{-z}{y}\right)\left(\dfrac{x}{z}\right)\)
\(\Rightarrow A=1\)
Vậy A = 1