cho tam giac ABC co A=60 do,C=50 do
a. tinh so do goc B
b,tia phan giac cua B cat AC tai D. Tinh so do cua \(\widehat{ABD}\)va\(\widehat{CDB}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ nha!
a) Xét \(\Delta ABC\) có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) (định lí tổng 3 góc của một tam giác)
Thay số vào ta được:
\(60^0+\widehat{B}+40^0=180^0\)
=> \(\widehat{B}=180^0-40^0-60^0\)
=> \(\widehat{B}=140^0-60^0\)
=> \(\widehat{B}=80^0\)
hay \(\widehat{ABC}=80^0.\)
Còn câu b) mình đang nghĩ nhé.
Chúc bạn học tốt!
Bài làm
a) Xét tam giác ABC ta có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)( Tổng ba góc trong tam giác )
hay \(60^0+\widehat{B}+50^0=180^0\)
=> \(\widehat{B}=180^0-60^0-50^0\)
=> \(\widehat{B}=70^0\)
Vậy \(\widehat{B}=70^0\)
b) Vì BD là tia phân giác góc B
=> \(\widehat{ABD}=\widehat{DBC}=\frac{\widehat{ABC}}{2}=\frac{70^0}{2}=35^0\)
Vậy \(\widehat{ABD}=35^0\)
Xét tam giác BDC có:
\(\widehat{BDC}+\widehat{C}+\widehat{CDB}=180^0\)( Tổng ba góc trong tam giác )
hay \(35^0+50^0+\widehat{CDB}=180^0\)
=> \(\widehat{CDB}=180^0-35^0-50^0\)
=> \(\widehat{CDB}=95^0\)
Vậy \(\widehat{CDB}=95^0\)
# Học tốt #
a) Theo định lí tổng ba góc trong một tam giác
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
60o +\(\widehat{B}\)+ 50o = 180o
\(\widehat{B}\) = 180o - (60o + 50o)
\(\widehat{B}\) = 70o
b)
*\(\widehat{ABD}\)
Vì BD là tia phân giác của tam giác ABC nên \(\widehat{ABD}\)=\(\widehat{DBC}\)=\(\frac{\widehat{B}}{2}\)=\(\frac{70}{2}\)= 35
Vậy \(\widehat{ABD}\)= 35o
*\(\widehat{CDB}\)
Theo định lí tổng ba góc trong một tam giác
\(\widehat{C}+\widehat{D}+\widehat{B}=180^o\)
Ta có \(\widehat{BCD}+\widehat{CDB}+D\widehat{BC}=180^o\)
50o +\(\widehat{CDB}\)+ 35o = 180o
\(\widehat{CDB}\) = 180o - (50o + 35o)
\(\widehat{CDB}\) = 95o
Vậy \(\widehat{CDB}\)= 95o