Một người đi xe đạp từ Đông Hòa đến Hiền Lương với vận tốc 15km/h. Lúc về, người đó chỉ đi với vận tốc 12km/h nên thời gian về thời gian đi 45 phút. Tính độ dài quãng đường Đông Hòa đến Hiền Lương.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(45ph=\dfrac{3}{4}\left(h\right)\)
Gọi thời gian đi là x>0 (giờ) \(\Rightarrow\) thời gian về là \(x+\dfrac{3}{4}\) (giờ)
Quãng đường lúc đi: \(15x\) (km)
Quãng đường lúc về: \(12\left(x+\dfrac{3}{4}\right)\) (km)
Do quãng đường AB là ko đổi nên ta có pt:
\(15x=12\left(x+\dfrac{3}{4}\right)\Leftrightarrow3x=9\Rightarrow x=3\) (giờ)
Độ dài quãng đường AB: \(S=15.3=45\left(km\right)\)
vì vận tốc tỉ lệ nghịch với thời gian nên tỉ số giữa 2 thời gian là
t1/t2=v2/v1=12/15=4/5
người đó đi mất số thời gian là:
15:(5-4)x4=60(phút)=1 giờ
Quãng đường AB dài là:
15x1=15(km)
DS:15km
Gọi thời gian đi là x (h) ( x>o)
Thời gian về là x+34(h)
Quãng đường đi 15x 3/4 (km)
Quãng đường về 12(x+3/4)(km)
Vì quãng đường AB lúc đi và về không đổi ---> phương trình
15x=12(x+34)
---> x=3(tmđk)
--->quãng đường AB dài :15.3=45(km)
Vậy......
Gọi quãng đường $AB$ là $x(km;x>0)$
Thời gian đi từ $A$ đến $B$ là $\dfrac{x}{15}(h)$
Lúc về người đó đi với số thời gian là $\dfrac{x}{12}(h)$
do thời gian về lâu hơn thời gian đi là $45p=\dfrac{3}{4}(h)$
Nên ta có phương trình: $\dfrac{x}{15}+\dfrac{3}{4}=\dfrac{x}{12}$
$⇔\dfrac{3x}{180}=\dfrac{3}{4}$
$⇔x=\dfrac{3}{4}.180:3=45$
Vậy quãng đương $AB$ dài $45$ km
Gọi độ dài quãng đường AB là x (km)
ta có thời gian lúc đi là : \(\frac{x}{15}\text{ giờ}\),thời gian lúc về là : \(\frac{x}{12}\text{ giờ}\), đổi 45 phút = 3/4 giờ
ta có : \(\frac{x}{12}-\frac{x}{15}=\frac{3}{4}\Leftrightarrow\frac{3x}{20}=\frac{3}{4}\Leftrightarrow x=5km\)
Độ dài quãng đường AB là 45 km.
Lời giải:
Gọi độ dài quãng đường AB là xx (km) (x>0)(x>0).
⇒⇒ Thời gian đi là x15x15 (h)
Thời gian về là x12x12 (h)
Vì thời gian về nhiều hơn thời gian đi là 45 phút = 3434 (h) nên ta có phương trình:
x12−x15=34x12−x15=34
⇒x(112−115)=34⇒x(112−115)=34
⇒x60=34⇒x60=34
⇒x=34.60=45⇒x=34.60=45 (km)
Vậy độ dài quãng đường AB là 45 km.
Goi độ dài AB là x
Theo đề, ta có: x/12-x/15=22/60=11/30
=>x/60=11/30
=>x=22
Gọi quãng đường là S.
Thời gian người đó đi từ A đến B là : \(t=\frac{S}{15}\)
Thời gian người đó đi từ B đến A là : \(t'=\frac{S}{12}\)
Theo đề ra : \(t'-t=\frac{3}{4}\) => \(S\left(\frac{1}{12}-\frac{1}{15}\right)=\frac{3}{4}\)
=> \(S=45\left(km\right)\)
Gọi q/đ `AB` là: `x (km)` `ĐK: x > 0`
`@` Thời gian đi là: `x/15 (h)`
`@` Thời gian về là: `x/12 (h)`
Vì t/gian về lâu hơn t/gian đi là `25 phút=5/12 h` nên ta có ptr:
`x/12-x/15=5/12`
`<=>[5x]/60-[4x]/50=25/50`
`<=>5x-4x=25`
`<=>x=25`(t/m)
Vậy q/đ `AB` dài `25 km`
Gọi x ( km ) là độ dài quãnh đường AB ( x > 0 )
Thời gian người đó đi từ A đến B là: \(\dfrac{x}{15}\) ( giờ )
Thời gian người đó đi về là: \(\dfrac{x}{12}\) ( giờ )
Vì thời gian về lâu hơn thời gian đi 25 ( = \(\dfrac{5}{12}\) giờ ) nên ta có phương trình:
\(\dfrac{x}{12}-\dfrac{x}{15}=\dfrac{5}{12}\)
\(\Leftrightarrow\dfrac{5x}{60}-\dfrac{4x}{60}=\dfrac{25}{60}\)
\(\Leftrightarrow5x-4x=25\)
\(\Leftrightarrow x=25\) ( nhận )
Vậy quãng đường AB dài 25 km
Gọi x(km) là qđường ...
=> x/15 là tgian lúc đi ; x/12 là tgian lúc về. 45' = 3/4h
Vì tgian về nhiều hơn tgian đi là 3/4h, nên ta có pt : \(\frac{x}{12}-\frac{x}{15}=\frac{3}{4}\Leftrightarrow x\left(\frac{1}{12}-\frac{1}{15}\right)=\frac{3}{4}\Leftrightarrow x\frac{1}{60}=\frac{3}{4}\Leftrightarrow x=45\)