Cho tam giác ABC vuông tại A, tỉ số của hai cạnh AB và AC là 3/4 , BC = 10cm.
a)Tính AB, AC
b) Vẽ dường phân giác BD. Tính DA,DC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A có
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC=8\left(cm\right)\)
hay AB=6(cm)
Xét \(\Delta ABC\)\(\perp\) tại \(A\)
Áp dụng định lí py - ta - go :
BC2 = AB2 + AC2
BC2 = 32 + 42
BC2 = 9 + 16
BC2 = 25
BC = 5 cm
Vậy BC = 5 cm .
Xét \(\Delta ABC\)có BD là đường phân giác \(\widehat{B}\)
\(\Rightarrow\)\(\frac{DA}{DC}=\frac{AB}{BC}\)\(\Rightarrow\) \(\frac{DA}{DC}=\frac{3}{5}\)\(\Rightarrow\) \(\frac{DA}{3}=\frac{DC}{5}\)\(=\frac{DA+DC}{3+5}=\frac{4}{8}=\frac{1}{2}\)
\(\Rightarrow\)\(\frac{DA}{3}=\frac{1}{2}\)\(\Rightarrow\)\(DA=\frac{3}{2}=1,5\)cm
Ta có : AC = AD + DC
4 = 1,5 + DC
\(\Rightarrow DC=2,5\)cm
Xét \(\Delta AHB\) và \(\Delta CAB\) có :
\(\widehat{AHB}\)\(=\)\(\widehat{CAB}\) ( cùng bằng 900 )
\(\widehat{B}\) chung
\(\Rightarrow\)\(\Delta AHB\)\(~\)\(\Delta CAB\) ( g - g )
Do \(\Delta AHB\) \(~\)\(\Delta CAB\)
\(\Rightarrow\)\(\frac{AB}{BH}=\frac{BC}{AB}\)\(\Rightarrow\)\(AB.AB=BH.BC\)\(\Rightarrow\)\(AB^2=BH.BC\)
a: AC=4cm
b: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó; ΔBAD=ΔBHD
c: Ta có: ΔBAD=ΔBHD
nên DA=DH
mà DH<DC
nên DA<DC
a: AC=4cm
b: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó; ΔBAD=ΔBHD
c: Ta có: ΔBAD=ΔBHD
nên DA=DH
mà DH<DC
nên DA<DC
a, Xét Δ ABC vuông tại A, có :
\(BC^2=AB^2+AC^2\) (định lí Py - ta - go)
=> \(BC^2=3^2+4^2\)
=> \(BC^2=25\)
=> BC = 5 (cm)
b, Xét Δ ABD và Δ EBD, có :
\(\widehat{ABD}=\widehat{EBD}\) (BD là tia phân giác \(\widehat{ABE}\))
\(\widehat{BAD}=\widehat{BED}=90^o\)
BD là cạnh chung
=> Δ ABD = Δ EBD (g.c.g)
=> AB = AE
Xét Δ ABE, có :
AB = AE (cmt)
=> Δ ABE cân tại E
Ta có :
Δ ABE cân tại E
BD là tia phân giác của \(\widehat{ABE}\))
=> BD là đường trung trực của AE
c, Ta có : Δ ABD = Δ EBD (cmt)
=> AD = ED
Trong Δ CED, cạnh huyền DC là cạnh lớn nhất
=> ED < DC
Mà AD = ED (cmt)
=> AD < DC
1: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
BD là phân giác
=>DA/AB=DC/BC
=>DA/3=DC/5=(DA+DC)/(3+5)=8/8=1
=>DA=3cm; DC=5cm
2: ΔABC vuông tại A mà AH là đường cao
nên BA^2=BH*BC
3: \(\dfrac{S_{AHB}}{S_{CAB}}=\left(\dfrac{AB}{CB}\right)^2=\dfrac{9}{25}\)
a: Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
=> AB=6cm
hay AC=8(cm)