K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2021

a: Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

=> AB=6cm

hay AC=8(cm)

10 tháng 10 2021

a: Xét ΔABC vuông tại A có 

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC=8\left(cm\right)\)

hay AB=6(cm)

10 tháng 10 2021

chi tiết được không ạ

 

6 tháng 4 2019

A B C H D 3 4

Xét \(\Delta ABC\)\(\perp\) tại \(A\)

Áp dụng định lí py - ta - go :

BC2 = AB2 + AC2

BC2 = 32 + 42

BC2 = 9 + 16

BC2 = 25

BC = 5 cm

Vậy BC = 5 cm .

Xét \(\Delta ABC\)có BD là đường phân giác \(\widehat{B}\)

\(\Rightarrow\)\(\frac{DA}{DC}=\frac{AB}{BC}\)\(\Rightarrow\) \(\frac{DA}{DC}=\frac{3}{5}\)\(\Rightarrow\) \(\frac{DA}{3}=\frac{DC}{5}\)\(=\frac{DA+DC}{3+5}=\frac{4}{8}=\frac{1}{2}\)

\(\Rightarrow\)\(\frac{DA}{3}=\frac{1}{2}\)\(\Rightarrow\)\(DA=\frac{3}{2}=1,5\)cm

Ta có : AC = AD + DC

           4 = 1,5 + DC

\(\Rightarrow DC=2,5\)cm

Xét \(\Delta AHB\) và  \(\Delta CAB\) có :

         \(\widehat{AHB}\)\(=\)\(\widehat{CAB}\) ( cùng bằng 900 )

           \(\widehat{B}\) chung

\(\Rightarrow\)\(\Delta AHB\)\(~\)\(\Delta CAB\) ( g - g )

6 tháng 4 2019

Do \(\Delta AHB\) \(~\)\(\Delta CAB\)

\(\Rightarrow\)\(\frac{AB}{BH}=\frac{BC}{AB}\)\(\Rightarrow\)\(AB.AB=BH.BC\)\(\Rightarrow\)\(AB^2=BH.BC\)

a: AC=4cm

b: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó; ΔBAD=ΔBHD

c: Ta có: ΔBAD=ΔBHD

nên DA=DH

mà DH<DC

nên DA<DC

a: AC=4cm

b: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó; ΔBAD=ΔBHD

c: Ta có: ΔBAD=ΔBHD

nên DA=DH

mà DH<DC

nên DA<DC

13 tháng 5 2022

a, Xét Δ ABC vuông tại A, có :

\(BC^2=AB^2+AC^2\) (định lí Py - ta - go)

=> \(BC^2=3^2+4^2\)

=> \(BC^2=25\)

=> BC = 5 (cm)

b, Xét Δ ABD và Δ EBD, có :

\(\widehat{ABD}=\widehat{EBD}\) (BD là tia phân giác \(\widehat{ABE}\))

\(\widehat{BAD}=\widehat{BED}=90^o\)

BD là cạnh chung
=> Δ ABD = Δ EBD (g.c.g)

=> AB = AE

Xét Δ ABE, có :

AB = AE (cmt)

=> Δ ABE cân tại E

Ta có :

Δ ABE cân tại E

BD là tia phân giác của \(\widehat{ABE}\))

=> BD là đường trung trực của AE

13 tháng 5 2022

c, Ta có : Δ ABD = Δ EBD (cmt)

=> AD = ED

Trong Δ CED, cạnh huyền DC là cạnh lớn nhất

=> ED < DC

Mà AD = ED (cmt)

=> AD < DC

1: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

BD là phân giác

=>DA/AB=DC/BC

=>DA/3=DC/5=(DA+DC)/(3+5)=8/8=1

=>DA=3cm; DC=5cm

2: ΔABC vuông tại A mà AH là đường cao

nên BA^2=BH*BC

3: \(\dfrac{S_{AHB}}{S_{CAB}}=\left(\dfrac{AB}{CB}\right)^2=\dfrac{9}{25}\)

18 tháng 4 2023

quá ngắn gọn. Mk cần bài trình bày đầy đủ