K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2019

Gọi \(\left(3n+1;5n+3\right)=d\)

\(\Rightarrow\hept{\begin{cases}3n+1⋮d\\5n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+5⋮d\\15n+6⋮d\end{cases}}}\)

\(\Rightarrow\left(15n+6\right)-\left(15n+5\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(\Rightarrow3n+1;5n+3\)nguyên tố cùng nhau.

Vậy...

3 tháng 8 2015

Gọi ƯCLN(a; b) là d. Ta có:

2n+1 chia hết cho d => 6n+3 chia hết cho d

3n+1 chia hết cho d => 6n+2 chia hết cho d

=> 6n+3-(6n+2) chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> ƯCLN(a; b) = 1

=> a và b nguyên tố cùng nhau (đpcm)

3 tháng 8 2015

Gọi ƯCLN(a; b) là d. Theo đề bài, ta có:

n chia hết cho d => 2n chia hết cho d

2n+1 chia hết cho d

=> 2n+1-2n chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> ƯCLN(a; b) = 1

=> a và b nguyên tố cùng nhau (đpcm)

21 tháng 8 2015

đ, gọi d là ước nguyên tố chung của 2n + 1 và 6n + 5

ta có : 2n + 1 : hết cho d ; 6n + 5 : hết cho d

=> 3( 2n + 1) : hết cho d : 6n + 5 : hết cho d

=> ( 6n + 5) - 3( 2n + 1) : hết cho d

=> 2 : hết cho d

=> d = 2

mà 2n + 1 ko : hết cho d

=> d = 1( dpcm)

21 tháng 8 2015

a) Goi d la UCLN ( n ; n+1 )                       b) Goi d la UCLN ( 3n+2 ;5n+3)

n+1 chia het cho d                                             3n+2 chia het cho d-->5(3n+2) chia het cho d

n chia het cho d                                                 5n+3 chia het cho d-->3(5n+3) chia het cho d

-> n+1-n chia het cho d                                 ->5(3n+2)-3(5n+3) chia het cho d

-> 1 chia het cho d                                        -> 15n+10-15n-9 chia het cho d

Va n va n+1 la hai so ngto cung nhau            - -> 1 chia het cho d

                                                                      Vay 3n+2 va 5n+3 chia het cho d

c) Goi d la UCLN (2n+1;2n+3)                                 d) Goi d la UCLN (2n+1;6n+5)

2n+1 chia het cho d                                                2n+1 chia het cho d-->3(2n+1) chiA het cho d

2n+3 chia het cho d--> 2n+1+2 chia het cho d          6n+5 chia het cho d

->2 chia het cho d                                               ->6n+5-3(2n+1) chia het cho d

--> d \(\in\)U (2)-> d\(\in\) {1;2}                                     -> 6n+5-6n-3 chia het cho d

d=2 loai vi 2n+1 khong chia het cho 2-> d=1         ->2 chia het  cho d

Vay 2n+1 va 2n+3 la hai so ng to cung nhau         --> d \(\in\)U (2)-> d\(\in\) {1;2} 

                                                                           d=2 loai vi 5n+3 k chia het cho 2-->d=1

                                                                       vay 2n+1 va 6n+5 la2 so ng to cung nhAU

 

15 tháng 2 2016

gọi (30n + 17, 12n + 7) = d

=> 30n + 17 chia hết cho d và 12n + 7 chia hết cho d

=> (30n + 17) - (12n + 7) chia hết cho d

=> 30 - 12 chia hết cho d

=> mà d lẻ và < 1

=> d = 1

vậy 30n + 17 và 12n + 7 là hai số nguyên tố cùng nhau

15 tháng 2 2016

làm được bao nhiêu thì làm 

ai làm được nhiêu nhất sẽ dduocj

AH
Akai Haruma
Giáo viên
6 tháng 7 2024

Lời giải:
Gọi $d=ƯCLN(3n,3n+1)$

$\Rightarrow 3n\vdots d; 3n+1\vdots d$

$\Rightarrow (3n+1)-3n\vdots d\Rightarrow 1\vdots d\Rightarrow d=1(1)$

Gọi $k=ƯCLN(3n, 5n+3)$

$\Rightarrow 3n\vdots k, 5n+3\vdots k$

$\Rightarrow 3(5n+3)-5.3n\vdots k\Rightarrow 9\vdots k$

$\Rightarrow k\in \left\{1; 3; 9\right\}$

Vậy $3n, 5n+3$ không có cơ sở để khẳng định là 2 số nguyên tố cùng nhau.