Cho a,b,c là 3 số khác 0 thỏa mãn \(\frac{ay-bx}{c}=\frac{cx-az}{b}=\frac{bz-cy}{a}\)
CMR \(\left(ax+by+cz\right)^2=\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương Ann Nhã Doanh đề bài khó wá Mashiro Shiina Đinh Đức Hùng
Nguyễn Huy Tú Lightning Farron Akai Haruma
Bài 3: y hệt bài mình đã từng đăng Câu hỏi của Thắng Nguyễn - Toán lớp 9 - Học toán với OnlineMath- trước mình có ghi lời giải mà lâu ko xem giờ quên r` :)
1) Đặt n+1 = k^2
2n + 1 = m^2
Vì 2n + 1 là số lẻ => m^2 là số lẻ => m lẻ
Đặt m = 2t+1
=> 2n+1 = m^2 = (2t+1)^2
=> 2n+1 = 41^2 + 4t + 1
=> n = 2t(t+1)
=> n là số chẵn
=> n+1 là số lẻ
=> k lẻ
+) Vì k^2 = n+1
=> n = (k-1)(k+1)
Vì k -1 và k+1 là 2 số chẵn liên tiếp
=> (k+1)(k-1) chia hết cho *
=> n chia hết cho 8
+) k^2 + m^2 = 3a + 2
=> k^2 và m^2 chia 3 dư 1
=> m^2 - k^2 chia hết cho 3
m^2 - k^2 = a
=> a chia hết cho 3
Mà 3 và 8 là 2 số nguyên tố cùng nhau
=> a chia hết cho 24
\(\frac{ay-bx}{c}=\frac{cx-az}{b}=\frac{bz-cy}{a}\)
\(\Rightarrow\frac{acy-bcx}{c^2}=\frac{bcx-abz}{b^2}=\frac{abz-acy}{a^2}=\frac{0}{a^2+b^2+c^2}=0\)
\(\Rightarrow\hept{\begin{cases}ay-bx=0\\cx-az=0\\bz-cy=0\end{cases}}\)
\(\Rightarrow\left(ay-bx\right)^2+\left(cx-az\right)^2+\left(bz-ay\right)^2=0\)
\(\Rightarrow a^2y^2-2axby+b^2x^2+a^2z^2-2axcz+c^2x^2+b^2z^2-2bycz\)
\(+c^2y^2=0\)
\(\Rightarrow a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2\)
\(=a^2x^2+b^2y^2+c^2z^2+2axby+2bycz+2axcz\)
\(\Rightarrow\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(ax+by+cz\right)^2\)
lần lượt nhân c,b,a vào tỉ số đầu rồi rút gọn đc ay-bx=cx-az=bz-cy => x/a=y/b=z/c(1)
Theo bđt bunhi thì dấu "=" xảy ra khi x/a=y/b=z/c ,tức là (1) đúng
1)
Ta có : a^3+b^3+c^3=(a+b+c).(a^2+b^2+c^2-a.b-b.c-a.c)+3.a.b.c=3.a.b.c
=(a+b+c).(a^2+b^2+c^2-a.b-b.c-a.c)=0
Ta thấy:a,b,c là số dương nên a+b+c khác 0 suy ra (a^2+b^2+c^2-a.b-b.c-a.c) =0 nên a=b=c
Vậy a=b=c
Bài 2:
Từ $xyz=1$ suy ra:
\(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=yz+xz+xy\)
\(\Leftrightarrow xy+yz+xz-x-y-z=0\)
\(\Leftrightarrow (xy-x-y+1)+yz+xz-z-1=0\)
\(\Leftrightarrow (x-1)(y-1)+yz+xz-z-xyz=0\)
\(\Leftrightarrow (x-1)(y-1)+z(y-1)-xz(y-1)=0\)
\(\Leftrightarrow (y-1)(x-1+z-xz)=0\)
\(\Leftrightarrow (y-1)[(x-1)-z(x-1)]=0\Leftrightarrow (y-1)(x-1)(1-z)=0\)
\(\Rightarrow \left[\begin{matrix} x=1\\ y=1\\ z=1\end{matrix}\right.\)
Nếu $x=1\Rightarrow yz=1$
$A=x^{2018}+2019^y-z^x=1+2019^y-z=1+2019^y-\frac{1}{y}$
Nếu $y=1\Rightarrow xz=1$
$A=x^{2018}+2019-z^x=x^{2018}+2019-\frac{1}{x^x}$
Nếu $z=1\Rightarrow xy=1$
$A=\frac{1}{y^{2018}}+2019^y-1$
Tóm lại với đkđb vẫn chưa tính được giá trị cụ thể của $A$
Bình phương ba vế suy ra \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
Sau đó chứng minh tương tự bunhiacopxki