K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2018

1) \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{2a^2}{2c^2}=\frac{3b^2}{3d^2}\)\(=\frac{2a^2+3b^2}{2c^2+3d^2}\)( theo tính chất dãy tỉ số bằng nhau )

\(\Rightarrow\frac{a^2}{c^2}=\frac{2a^2+3b^2}{2c^2+3d^2}\)

2) \(\frac{a}{b}=\frac{c}{d}\)\(=\frac{2a}{2b}=\frac{3c}{3d}=\frac{2a-3c}{2b-3d}\)( theo tính chất dãy tỉ số bằng nhau )

\(\Rightarrow\frac{2a-3c}{2b-3d}=\frac{c}{d}\)\(\Rightarrow\frac{2a-3c}{c}=\frac{2b-3d}{d}\)

25 tháng 9 2017

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT=\dfrac{a}{b+2c+3d}+\dfrac{b}{c+2d+3a}+\dfrac{c}{d+2a+3b}+\dfrac{d}{a+2b+3c}\)

\(=\dfrac{a^2}{ab+2ac+3ad}+\dfrac{b^2}{bc+2bd+3ab}+\dfrac{c^2}{cd+2ac+3bc}+\dfrac{d^2}{ad+2bd+3cd}\)

\(\ge\dfrac{\left(a+b+c+d\right)^2}{4\left(ab+ad+bc+bd+ca+cd\right)}\ge\dfrac{\left(a+b+c+d\right)^2}{\dfrac{3}{2}\left(a+b+c+d\right)^2}=\dfrac{2}{3}\)

*Chứng minh \(4\left(ab+ad+bc+bd+ca+cd\right)\le\dfrac{3}{2}\left(a+b+c+d\right)^2\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-d\right)^2+\left(b-c\right)^2+\left(b-d\right)^2+\left(a-c\right)^2+\left(c-d\right)^2\ge0\)

25 tháng 9 2017

Làm lại lun ._.

20 tháng 12 2016

Giải:
Ta có: \(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)

\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)

\(\Rightarrow a=bk,b=ck,c=dk\)

Ta có:

\(\left(\frac{a+b-c}{b+c-d}\right)^3=\left(\frac{bk+ck-dk}{b+c-d}\right)^3=\left[\frac{k\left(b+c-d\right)}{b+c-d}\right]^3=k^3\) (1)

\(\left(\frac{2a+3b-4c}{2b+3c-4d}\right)^2=\left(\frac{2bk+3ck-4dk}{2b+3c-4d}\right)^3=\left[\frac{k\left(2b+3c-4d\right)}{2b+3c-4d}\right]^3=k^3\) (2)

Từ (1) và (2) suy ra \(\left(\frac{a+b-c}{b+c-d}\right)^3=\left(\frac{2a+3b-4c}{2b+3c-4d}\right)^3\) ( đpcm )

5 tháng 2 2022

đặt a/b =c/d =k 

=> a=bm , c=dm 

=> 2a+3c/2b+3d =2bm+3bm/ 2b +3d = m.(2d+3d)/2d+3d =m (1)

=> 2a-3c/2d-3d=2bm-3dm /2b -3d =m.(2b-3d)/2b-3d= m (2)

Từ (1) và (2) => 2a+3c/2b+3d =2a-3c/2b-3d 

câu 2 tương tự nha

3 tháng 4 2023

bạn khôi đặt là k mà lại khi m

 

5 tháng 11 2018

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Khi đó, ta có : \(\frac{3bk+2b}{2bk+3b}=\frac{\left(3k+2\right)b}{\left(2k+3\right)b}=\frac{3k+2}{2k+3}\)(1)

       \(\frac{3dk+2d}{2dk+3d}=\frac{\left(3k+2\right).d}{\left(2k+3\right).d}=\frac{3k+2}{2k+3}\)(2)

Từ (1) và (2), suy ra :  \(\frac{3a+2b}{2a+3b}=\frac{3c+2d}{2c+3d}\)

22 tháng 10 2019

a) Từ \(\frac{a}{b}=\frac{c}{d}\)

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

Khi đó : \(\frac{2a-3b}{2a+3b}=\frac{2bk-3b}{2bk+3b}=\frac{2b\left(k-\frac{3}{2}\right)}{2b\left(k+\frac{3}{2}\right)}=\frac{k-\frac{3}{2}}{k+\frac{3}{2}}\left(1\right)\)

\(\frac{2c-3d}{2c+3d}=\frac{2dk-3d}{2dk+3d}=\frac{2d\left(k-\frac{3}{2}\right)}{2d\left(k+\frac{3}{2}\right)}=\frac{k-\frac{3}{2}}{k+\frac{3}{2}}\left(2\right)\)

Từ (1) và (2) => \(\frac{2a-3b}{2a+3b}=\frac{2c-3d}{2c+3d}\left(\text{đpcm}\right)\)

b) Ta có : \(\frac{ab}{cd}=\frac{bkb}{dkd}=\frac{b^2}{d^2}\left(1\right)\)

\(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\frac{\left[b\left(k-1\right)\right]^2}{\left[d\left(k-1\right)\right]^2}=\frac{b^2,\left(k-1\right)^2}{d^2.\left(k-1\right)^2}=\frac{b^2}{d^2}\left(2\right)\)

Từ (1) và (2) => \(\frac{ab}{cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\left(\text{đpcm}\right)\)