Chứng minh\(\sqrt{3+\sqrt{3+......+\sqrt{3}}}\)( 2019 dấu căn ) < 2
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
29 tháng 12 2015
nếu là toán lớp 9 thì bạn vào hoc24.vn để đăng câu hỏi nha bạn
Ai đồng ý thì cho ít **** !!!
NQ
26 tháng 11 2017
Ta có :Đặt t = \(\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}} ( 2014 dấu căn )\)
\(\Rightarrow\) t > \(\sqrt{3} > \sqrt{1} = 1\)
\(\Rightarrow\) \(\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}\)(2013 dấu căn ) = \(t^2 -3\)
Do đó : \(M = \frac{3-t}{6-( t^2 - 3 )}\)= \(\frac{3-t}{9-t^2}\) = \(\frac{3-t}{(3-t)(3+t)}\) = \(\frac{1}{3+t}\)
Vì t>1 \(\Rightarrow\) 3+t > 4 \(\Rightarrow\) \(\frac{1}{3+t}\) < \(\frac{1}{4}\)
Vậy M < \(\frac{1}{4}\)
ML
9 tháng 7 2015
Đặt cái căn dưới mẫu là a, suy ra căn trên tử là \(\sqrt{3+a}\). Nếu đề chính xác thì biến đổi tương đương nhẹ nhàng là ra :))
Đề bài chắc chắn sai bạn
\(\sqrt{3+...+\sqrt{3}}>1\Rightarrow\sqrt{3+\sqrt{3+...+\sqrt{3}}}>\sqrt{3+1}=2\)