đưa thừa số vào trong dấu căn
1, 6(\(\sqrt{15}\)-4)\(\sqrt{\frac{31+8\sqrt{15}}{12}}\)
2, \(\frac{x+1}{x-1}\)\(\sqrt{\frac{x^2-3x+2}{x+1}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
\(\dfrac{2\sqrt{3}-10}{5}\cdot\sqrt{\dfrac{5+\sqrt{3}}{5-\sqrt{3}}}\)
\(=\dfrac{2\sqrt{3}-10}{5}\cdot\sqrt{\dfrac{28+10\sqrt{3}}{22}}\)
\(=\dfrac{2\sqrt{3}-10}{5}\cdot\dfrac{5+\sqrt{3}}{\sqrt{22}}\)
\(=\dfrac{2\left(\sqrt{3}-5\right)\left(\sqrt{3}+5\right)}{5\sqrt{22}}\)
\(=\dfrac{2\cdot\left(3-25\right)}{5\sqrt{22}}=\dfrac{-44}{5\sqrt{22}}=\dfrac{-2\sqrt{22}}{5}\)
a) \(x\sqrt{\frac{1}{x}}=\sqrt{x^2\cdot\frac{1}{x}}=\sqrt{\frac{x^2}{x}}=\sqrt{x}\)( với x > 0 )
b) \(x\sqrt{\frac{-1}{x}}=-\sqrt{x^2\cdot\frac{1}{x}}=-\sqrt{\frac{x^2}{x}}=-\sqrt{x}\)( với x < 0 )
a)\(=-\sqrt{\left(\frac{a}{b}\right)^2\cdot\frac{b}{a}}\)
\(=-\sqrt{\frac{a^2}{b^2}\cdot\frac{b}{a}}\)
\(=-\sqrt{\frac{a}{b}}\)
\(\frac{1}{2x-1}\sqrt{5-20x+20x^2}=\frac{1}{2x-1}\sqrt{5.\left(1-4x+4x^2\right)}\)
\(=\frac{1}{2x-1}\sqrt{5.\left(1-2x\right)^2}=\sqrt{\frac{1}{\left(2x-1\right)^2}}\sqrt{5.\left(2x-1\right)^2}\)(x>1/2)
\(=\sqrt{\frac{1}{\left(2x-1\right)^2}.5.\left(2x-1\right)^2}=\sqrt{5}\)