Tính tỉ số \(\frac{x+y}{x-y}\),biết rằng \(\frac{x}{y}\)=a,x ko bằng y và y ko bằng 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x^2-xy-2y^2=0\Leftrightarrow x^2+xy-2xy+2y^2=0\)\(\Leftrightarrow x\left(x+y\right)-2y\left(x+y\right)=0\Leftrightarrow\left(x+y\right)\left(x-2y\right)=0\)
Vì \(x+y\ne0\Rightarrow x=2y\)
=> \(A=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)
Ta có : \(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\Leftrightarrow\frac{1}{x+y}=\frac{x+y}{xy}\Leftrightarrow\left(x+y\right)^2=xy\)
Mặt khác, ta có : \(\left(x-y\right)^2\ge0\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow x^2+2xy+y^2\ge4xy\)
\(\Leftrightarrow\left(x+y\right)^2\ge4xy>xy\)
Do đó dấu "=" không xảy ra
=> Không tồn tại hai số x,y thỏa mãn giả thiết
Ta dùng phương pháp chứng minh phản chứng:
Giả sử tồn tại hai số hữu tỉ x và y thỏa mãn đẳng thức 1x+y =1x +1y
Suy ra 1x+y =y+xxy ⇔xy=(x+y).(x+y) ⇔(x+y)2=xy
Vì x + y trái dấu ⇒ (x + y)2 > 0 nên xy > 0 nhưng x và y là hai số trái dấu, không đối nhau nên xy < 0. Do đó đẳng thức trên không xảy ra.
Vậy không tồn tại hai số hữu tỉ x và y trái dấu, không đối nhau thỏa mãn đề bài.
TA CÓ : \(\frac{X}{Y}\)=A
=> X=YA
THAY VÀO PHÂN SỐ,CÓ ĐPCM
Gỉa sử tồn tại hai số hữu tỉ x, y trái dấu ko đối nhau tm \(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\) <=> 1 / x+ y = x + y / xy <=>(x+ y )^2 = xy (1) ( nhân chéo hai vế)
Do x và y là hai số hữu tỉ trái dấu nên xy<0 mà (x+ y)^2 lớn hơn hoặc bằng 0 với mọi x và y => (x+y)^2 >xy trái với (1)
Suy ra điều giả sử ko xảy ra => ko có hai số nào tm => đpcm
\(\frac{1}{x}+\frac{1}{y}=\frac{x+y}{x.y}\)
\(\Rightarrow\frac{1}{x+y}=\frac{x+y}{x.y}\Rightarrow x.y=\left(x+y\right)^2\)
khong thoa man vi x.y la so am con (x+y)^2 la so duong
Theo giả thiết \(\frac{x}{y}=a,x\ne y\).
Thế x = ay ta có : \(\frac{x+y}{x-y}=\frac{ay+y}{ay-y}=\frac{y\left[a+1\right]}{y\left[a-1\right]}=\frac{a+1}{a-1}\)
Vậy \(\frac{x+y}{x-y}=\frac{a+1}{a-1}\)
thank you