Chứng minh rằng: Với mọi tập A, B, C ''nếu \(A\cup C=B\cup C\) thì A = B '' là mệnh đề sai
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Xét $x\in A\cap (B\cup C)$
$\Rightarrow x\in A$ và $x\in B\cup C$
\(\Rightarrow \left\{\begin{matrix} x\in A\\ \left[\begin{matrix} x\in B\\ x\in C\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} x\in A\\ x\in B\end{matrix}\right.\\ \left\{\begin{matrix} x\in A\\ x\in C\end{matrix}\right.\end{matrix}\right.\Rightarrow x\in (A\cap B)\cup (A\cap C)(*)\)
Xét $x\in (A\cap B)\cup (A\cap C)$
$\Rightarrow x\in A\cap B$ hoặc $x\in A\cap C$
$\Rightarrow x\in A$ và $x\in B$ hoặc $x\in C$
Tức là: $x\in A\cap (B\cup C)(**)$
Từ $(*); (**)$ suy ra $A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$
b. Xét $x\in (A\setminus B)\setminus C$ bất kỳ
$\Rightarrow x\in A$ và $x\not\in B, x\not\in C$
Vì $x\in A, x\not\in C$ nên $x\in A\setminus C$
Do đó: $(A\setminus B)\setminus C\subset A\setminus C$
a2+b2+3-2a-2b-2c≥0
=> (a2-2a+1)+(b2-2b+1)+(c2-2c+1)≥0
=> (a-1)2+(b-1)2+(c-1)2≥0 ( luon dung )
Lời giải:
Cho:
$A=\left\{1;2;3;5\right\}$
$B=\left\{2;3;5\right\}$
$C=\left\{1;2\right\}$
Khi đó: $A\cup C=\left\{1;2;3;5\right\}=B\cup C$
Tuy nhiên $A$ không bằng $B$
Do đó mệnh đề sai.