BT: Cho ΔABC nhọn (AB < AC)
đường cao AH. Gọi M, P, Q lần lượt
là trung điểm của BC, CA, AB. C/m:
a, PQ là đường trung trự của AH
b, Tứ giác MPQN là hình chữ nhật
c, Tìm điều kiện của ΔABC để MPQN là hình chữ nhật
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ADME có
góc ADM=góc AEM=góc DAE=90 độ
=>ADME là hình chữ nhật
b; Xét ΔABC có
M là trung điểm của BC
MD//AC
=>D là trung điểm của AB
Xét tứ giác AMBI có
D là trung điểm chung của AB và MI
=>AMBI là hình bình hành
mà MA=MB
nên AMBI là hình thoi
c: AMBI là hình vuông
=>góc AMB=90 độ
Xét ΔABC có
AM vừa là đường cao, vừa là trung tuyến
=>ΔABC cân tại A
=>AB=AC
(hình ảnh mag tính chất minh họa nên tỉ lệ k đc chính xác)
a) Tam giác ABC có QA = QP; PA = PC
=> QP là đường trung bình của tam giác ABC
=> QP // BC
mà AH vuông góc với BC
=> QP vuông góc với AH (1)
Gọi N là giao điểm của AH và PQ
Tam giác ABH có: QA = QB; QN // BH
=> NA = NH (2)
Từ (1) và (2) suy ra: PQ là trung trực của AH
b) Tứ giác MPQH có: QP // HM
=> MPQH là hình thang (3)
Tam giác AHB vuông tại H, có HQ là đường trung tuyến
=> HQ = QB = QA = AB/2
=> tgiac QBH cân tại Q
=> góc QBH = góc QHB
MP là đường trung bình tgiac ABC
=> MP // AB
=> góc PMC = góc ABH
=> góc PMC = góc QHB
=> góc PMH = góc QHM (4)
Từ (3) và (4) suy ra: MPQH là hình thang cân
a, Xét tam giác ABC vuông tại A, đường cao AH
\(AB^2+AC^2=BC^2\Rightarrow BC^2=64+225=289\Rightarrow BC=17\)cm
Xét tam giác AHC và tam giác BAC ta có :
^AHC = ^BAC = 900
^C _ chung
Vậy tam giác AHC ~ tam giác BAC ( g.g )
\(\Rightarrow\frac{AH}{AB}=\frac{AC}{BC}\)( tỉ số đồng dạng )
\(\Rightarrow AH.BC=AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{8.15}{17}=\frac{120}{17}\)cm
b, Vì MH vuông AB
NA vuông AB
=> MH // NA tương tự ta có : MH // AN
=> tứ giác AMNH là hình bình hành
mà ^HNA = 900 ; ^BAC = 900 ; ^HMA = 900
=> tứ giác AMHN là hình vuông