Cho \(x+y=\sqrt{10};x>0,y>0.\)Tìm GTNN \(K=\left(x^4+1\right)\left(y^4+1\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x}+2\sqrt{y}=10=>\left(\sqrt{x}+2\sqrt{y}\right)^2=100\)
BDT Bunhiacopxki (đề sai phải lớn hơn bằng 20)
\(=>\left(\sqrt{x}+2\sqrt{y}\right)^2\le\left(1^2+2^2\right)\left(x+y\right)=5\left(x+y\right)\)
\(< =>5\left(x+y\right)\ge100=>x+y\ge20\)
Đề Sai sửa lại nha \(A=\frac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+10}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{10.\sqrt{z}}{\sqrt{xz}+10\sqrt{x}+10}\)
\(B=\frac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+10}\)
\(C=\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}\)
\(D=\frac{10.\sqrt{z}}{\sqrt{xz}+10\sqrt{x}+10}\)
\(\Rightarrow C=\frac{\sqrt{x}.\sqrt{y}}{\sqrt{x}.\left(\sqrt{yz}+\sqrt{y}+1\right)}=\frac{\sqrt{xy}}{\sqrt{yzx}+\sqrt{yx}+\sqrt{x}}=\frac{\sqrt{xy}}{10+\sqrt{yx}+\sqrt{x}}\)
(do xyz=100 nên căn xyz=10)
\(\Rightarrow D=\frac{\left(\frac{10.\sqrt{z}}{\sqrt{z}}\right)}{\left(\frac{\sqrt{xz}+10\sqrt{x}+10}{\sqrt{z}}\right)}=\frac{10}{\sqrt{x}+10+\frac{\sqrt{xyz}}{\sqrt{z}}}=\frac{10}{\sqrt{x}+10+\sqrt{xy}}\)(10= căn xyz do xyz=100)
\(\Leftrightarrow A=B+C+D=\frac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+10}+\frac{\sqrt{xy}}{10+\sqrt{yx}+\sqrt{x}}+\frac{10}{\sqrt{x}+10+\sqrt{xy}}\)
\(=\frac{\sqrt{xy}+\sqrt{x}+10}{\sqrt{xy}+\sqrt{x}+10}=1\)
T i c k cho mình nha cảm ơn
Ta có x.y.z=100
Suy ra \(\sqrt{xyz}=10\)
Thay \(10=\sqrt{xyz}\) vào A ta được
\(A=\frac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+\sqrt{xyz}}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{\sqrt{z}}{\sqrt{xz}+\sqrt{xyz}\sqrt{z}+\sqrt{xyz}}\)
\(A=\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{y}+1+\sqrt{yz}\right)}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{\sqrt{z}}{\sqrt{zx}\left(1+\sqrt{yz}+\sqrt{y}\right)}\)
\(A=\frac{1}{\sqrt{yz}+\sqrt{y}+1}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{\sqrt{yz}}{10\left(\sqrt{yz}+\sqrt{y}+1\right)}\)
Mình giải tới đây bí mất rồi ai biết thì làm tiếp rồi chỉ bạn đó nhé
1.
Xét riêng 2 căn lớn đầu tiên
Bình phương, thu gọn được căn(12-8 căn 2)
Giờ kết hợp kết quả này với căn lớn còn lại
Tiếp tục bình phương, thu gọn là xong
\(\Leftrightarrow x+y=\sqrt{x+10}+\sqrt{y+10}\le\sqrt{2\left(x+y+20\right)}\) (\(x+y>0\))
\(\Rightarrow\left(x+y\right)^2\le2\left(x+y+20\right)\)
\(\Rightarrow\left(x+y\right)^2-2\left(x+y\right)-40\le0\)
\(\Rightarrow\left(x+y+1+\sqrt{41}\right)\left(x+y-1-\sqrt{41}\right)\le0\)
\(\Rightarrow x+y-1-\sqrt{41}\le0\)
\(\Rightarrow x+y\le1+\sqrt{41}\)
Dấu "=" xảy ra khi \(x=y=\frac{1+\sqrt{41}}{2}\)
\(\frac{x}{\sqrt{x}+\sqrt{y}}-\frac{y}{\sqrt{x}+\sqrt{y}}=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}=\sqrt{x}-\sqrt{y}\)
\(tt:\frac{y-z}{\sqrt{y}+\sqrt{z}}=\sqrt{y}-\sqrt{z};.....\)
\(\Rightarrow\frac{x}{\sqrt{x}+\sqrt{y}}-\frac{y}{\sqrt{y}+\sqrt{x}}+.....-\frac{x}{\sqrt{x}+\sqrt{z}}=0\Rightarrow dpcm\)
X+Y=\(\sqrt{4-\sqrt{10+2\sqrt{5}}}+\sqrt{4+\sqrt{10+2\sqrt{5}}}\)
\(\left(X+Y\right)^2=(\sqrt{4-\sqrt{10+2\sqrt{5}}}+\sqrt{4+\sqrt{10+2\sqrt{5}}})^2\)
\(\left(X+Y\right)^2=4-\sqrt{10+2\sqrt{5}}+4+\sqrt{10+2\sqrt{5}}+2\sqrt{\left(4-\sqrt{10+2\sqrt{5}}\right)\left(4+\sqrt{10+2\sqrt{5}}\right)}\)
\(\left(X+Y\right)^2=8+2\sqrt{4^2-\left(\sqrt{10+2\sqrt{5}}\right)^2}\)
\(\left(X+Y\right)^2=8+2\sqrt{6-2\sqrt{5}}\)
\(\left(X+Y\right)^2=8+2\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(\left(X+Y\right)^2=8+2\sqrt{5}-2\)
\(\left(X+Y\right)^2=6+2\sqrt{5}\)
\(X+Y=\sqrt{6+2\sqrt{5}}=\sqrt{5}+1\)
a/ Ta có \(\sqrt{x^2-6x+22}+\sqrt{x^2-6x+10}=4\)
\(\Leftrightarrow\left(\sqrt{x^2-6x+22}+\sqrt{x^2-6x+10}\right)\left(\sqrt{x^2-6x+22}-\sqrt{x^2-6x+10}\right)=4A\)
\(\Leftrightarrow4A=\left(x^2-6x+22\right)-\left(x^2-6x+10\right)\)
\(\Leftrightarrow4A=12\Leftrightarrow A=3\)
b/ Tương tự.
Câu 1
a, \(\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\) ( ĐKXĐ: \(x\ge0;x\ne25\))
=\(\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}-\dfrac{5}{\sqrt{x}+5}\)
=\(\dfrac{\sqrt{x}\left(\sqrt{x}+5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}-\dfrac{10\sqrt{x}}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}-\dfrac{5\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)
=\(\dfrac{x+5\sqrt{x}-10\sqrt{x}-5\sqrt{x}+25}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\)
=\(\dfrac{x-10\sqrt{x}+25}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\)
=\(\dfrac{\left(\sqrt{x}-5\right)^2}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\)
=\(\dfrac{\sqrt{x}-5}{\sqrt{x}+5}\)
b, Với \(x\ge0;x\ne25\) để \(A< 0\) thì \(\sqrt{x}-5\) < 0 ( Vì \(\sqrt{x}+5\) > 0 )
<=> x < 25
CÁI NÀY mk lm rồi
x^2+2xy+y^2=10
x^2+y^2=10-2xy