Cho A=3+3^2+3^3+3^4+...+3^100
a, tinh gia tri cua A
b, Chung to A chia het cho 10
c, tim so du cua A khi chia cho 13
d, tim x 2A-3=3^x+100
e, 2A co phai la so chinh phuong khong
dag can gap
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=2+2^2+....+2^{2019}\)
\(\Rightarrow2A=2^2+2^3+....+2^{2020}\)
\(\Rightarrow2A-A=2^{2020}-2\)
\(\Rightarrow A=2^{2020}-2\)
b) \(A+2=2^{2020}-2+2=2^{2020}=\left(2^{1010}\right)^2\)là SCP
làm nốt lười
\(a;\frac{2n+5}{n+3}\)
Gọi \(d\inƯC\left(2n+5;n+3\right)\Rightarrow3n+5⋮d;n+3⋮d\)
\(\Rightarrow2n+5⋮d\)và \(2\left(n+3\right)⋮d\)
\(\Rightarrow\left[\left(2n+6\right)-\left(2n+5\right)\right]⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy \(\frac{2n+5}{n+3}\)là phân số tối giản
\(B=\frac{2n+5}{n+3}=\frac{2\left(n+3\right)+5-6}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=2-\frac{1}{n+3}\)
Với \(B\in Z\)để n là số nguyên
\(\Rightarrow1⋮n+3\Rightarrow n+3\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow n\in\left\{-2;-4\right\}\)
Vậy.....................
a, \(\frac{2n+5}{n+3}\)Đặt \(2n+5;n+3=d\left(d\inℕ^∗\right)\)
\(2n+5⋮d\) ; \(n+3⋮d\Rightarrow2n+6\)
Suy ra : \(2n+5-2n-6⋮d\Rightarrow-1⋮d\Rightarrow d=1\)
Vậy tta có đpcm
b, \(B=\frac{2n+5}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=\frac{-1}{n+3}=\frac{1}{-n-3}\)
hay \(-n-3\inƯ\left\{1\right\}=\left\{\pm1\right\}\)
-n - 3 | 1 | -1 |
n | -4 | -2 |
ta có : \(a\) có dạng \(3n+1\) hoặc \(3n+2\) và \(b\) có dạng \(3m+1\) hoặc \(3m+2\)
th1: \(a;b\) chia 3 dư \(1\) \(\Rightarrow ab-1=\left(3n+1\right)\left(3m+1\right)\)
\(=9nm+3n+3m+1-1=3\left(3nm+n+m\right)⋮3\)
th2: \(a;b\) chia 3 dư \(2\) \(\Rightarrow ab-1=\left(3n+2\right)\left(3m+2\right)\)
\(=9nm+6n+6m+4-1=3\left(3nm+2n+2m+1\right)⋮3\)
\(\Rightarrow\) đpcm
Bài 1
1+2-3-4+5+6-7-8+9+10-....+2006-2007-2008+2009
=1+(2-3-4+5)+(6-7-8+9)+...+(2006-2007-2008+2009)
=1+0+0+....+0
=1
Bài 2
Ta có: S=3^1+3^2+...+3^2015
3S=3^2+3^3+...+3^2016
=> 3S-S=(3^2+3^3+...+3^2016)-(3^1+3^2+...+3^2015)
2S=3^2016-3^1
S=\(\frac{3^{2016}-3}{2}\)
Ta có \(3^{2016}=3^{4K}=\left(3^4\right)^K=\left(81\right)^K=.....1\)
=> \(S=\frac{3^{2016}-3}{2}=\frac{....1-3}{2}=\frac{....8}{2}\)
=> S có 2 tận cùng 4 hoặc 9
mà S có số hạng lẻ => S có tận cùng là 9
Ta có : 2S=3^2016-3(=)2S+3=3^2016 => X=2016