cho x^2 =y^2+4z^2 chứng minh (5x-3y+8z )(5x-3y-8z)+1 luôn Dương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2=y^2+4z^2\Rightarrow x^2-y^2=4z^2\)
\(A=\left(5x-3y+8x\right)\left(5x-3y-8z\right)+1\)
\(=\left(5x-3y\right)^2-64z^2+1\)
\(=\left(5x-3y\right)^2-16\left(x^2-y^2\right)+1\)
\(=25x^2+9y^2-30xy-16x^2+16y^2+1\)
\(=9x^2-30xy+25y^2+1\)
\(=\left(3x-5y\right)^2+1>0\) \(\forall x;y\)
Áp dụng hằng đẳng thức \(\left(a-b\right).\left(a+b\right)=a^2-b^2\) vào ta được:
\(\left(5x-3y+8z\right).\left(5x-3y-8z\right)=\left(5x-3y\right)^2-\left(8z\right)^2\)
\(=25x^2-30xy+9y^2-64z^2.\)
Ta dùng tính chất:
\(x^2=y^2+4z^2\Rightarrow x^2-y^2=4z^2.\)
\(\Leftrightarrow25x^2-30xy+9y^2-16.4z^2\)
\(=25x^2-30xy+9y^2-16.\left(x^2-y^2\right)\)
\(=25x^2+9y^2-30xy-16x^2+16y^2\)
\(=9x^2-30xy+25y^2\)
\(=\left(3x-5y\right)^2.\)
Ta có: \(\left(3x-5y\right)^2+1\ge0\) \(\forall x,y.\)
\(\Rightarrow\left(3x-5y\right)^2\) luôn dương.
\(\Rightarrow\left(5x-3y+8z\right).\left(5x-3y-8z\right)+1\) luông dương \(\forall x,y\left(đpcm\right).\)
Chúc bạn học tốt!
Áp dụng hằng đẳng thức ( a - b ) ( a + b ) = a2 - b2 ta đc:
\(\left(5x-3y+8z\right)\left(5x-3y-8z\right)=\left(5x-3y\right)^2-\left(8z\right)^2\)
\(=25x^2-30xy+9y^2-64z^2\)
Đề có sai ko vậy bn
mk lấy kq của bạn Kia Cerato mk giải típ
tc \(x^2=y^2+4z^2\Leftrightarrow x^2-y^2=4z^2\)
\(\Leftrightarrow25x^2-30xy+9y^2-16.4z^2\)
\(=25x^2-30xy+9y^2-16\left(x^2-y^2\right)\)
\(=25x^2+9y^2-30xy-16x^2+16y^2\)
\(=9x^2-30xy+25y^2=\left(3x-5y\right)^2\)
ok
\(x^2-y^2=4z^2\\ \Leftrightarrow64z^2=16x^2-16y^2\)
\(\left(5x-3y+8z\right)\left(5x-3y-8z\right)\\ =\left(5x-3y\right)^2-64z^2\\ =25x^2-30xy+9y^2-64z^2\\ =25x^2-16x^2+9y^2+16y^2-30xy\\ =9x^2-30xy+25y^2=\left(3x-5y\right)^2\)
Ta có:
\(x^2-y^2-z^2=0\left(gt\right)\)
Nếu \(\left(5x-3y+4z\right)\left(5x-3y-4z\right)=\left(3x-5y\right)^2\)
\(\Rightarrow\left(5x-3y\right)^2-16z^2=\left(3x-5y\right)^2\)
\(\Rightarrow\left(5x-3y\right)^2-\left(3x-5y\right)^2=16z^2\)
\(\Rightarrow\left(5x-3y-3x+5y\right)\left(5x-3y+3x-5y\right)=16z^2\)
\(\Rightarrow\left(2x+2y\right)\left(8x-8y\right)=16z^2\)
\(\Rightarrow2\left(x+y\right).8\left(x-y\right)=16z^2\)
\(\Rightarrow16\left(x^2-y^2\right)=16z^2\)
\(\Rightarrow x^2-y^2=z^2\)
\(\Rightarrow x^2-y^2-z^2=0\)
\(\Rightarrow\) Đúng với giả thuyết ban đầu
Vậy \(\left(5x-3y+4z\right)\left(5x-3y-4z\right)=\left(3x-5y\right)^2\) với \(x^2-y^2-z^2=0\)
Ta có
\(\left(5x-3y+4z\right)\left(5x-3y-4z\right)=\left(5x-3y\right)^2-16z^2\)
\(=25x^2-30xy+9y^2-16z^2\left(!\right)\)
Thay \(x^2=y^2+z^2\) vào ! thì
\(25x^2-30xy+9y^2-16\left(x^2-y^2\right)\)
\(=\left(3x-5y\right)^2\)
có \(x^2=y^2+4x^2\)
\(x^2-y^2=4z^2\)
Tiếp tục với \(\left(5x-3y+8z\right)\left(5x-3y-8z\right)+1\)
\(=\left(5x-3y\right)^2-\left(8x\right)^2+1\)
\(=25x^2-30xy+9y^2-64x^2+1\)
\(=25x^2-30xy+9y^2-16\cdot4x^2+1\)
Thay \(x^2-y^2=4z^2\)
\(\Rightarrow25x^2-30xy+9y^2-16\cdot4x^2+1\)
\(=25x^2-30xy+9y^2-16\cdot\left(x^2-y^2\right)+1\)
\(=25x^2-30xy+9y^2-16x^2+16y^2+1\)
\(=9x^2-30xy+25y^2+1\)
\(=\left(9x^2-30xy+25y^2\right)+1\)
\(=\left(3x-5y\right)^2+1\)
ta có \(\left(3x-5y\right)^2\ge0\)
\(\Rightarrow\left(3x-5y\right)^2+1>0\)
\(\Rightarrow\left(5x-3x+8z\right)\left(5x-3y-8z\right)+1\)luôn dương với mọi x;y