\(\Delta ABC\) có BC = 40cm, đường phân giác AD dài 45cm, đường cao AH dài 36cm. Tính độ dài BD, DC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ABCEHD
+) Kẻ AE là phân giác ngoài của góc BAC
Mà AD là phân giác của góc BAC nên AD vuông góc với AE => tam giác EAD vuông tại A
+) Áp dụng ĐL Pi - ta go trong tam giác vuông AHD có: DH = √AD2−AH2=√452−362=27 cm
+) Áp dụng hệ thức lượng trong tam giác vuông EAD có: AD2 = DH. DE => DE = AD2 / DH = 452/ 27 = 75 cm
+)Áp dụng tính chất tia phân giác trong và ngoài tam giác có: BDDC =ABAC =EBEC
Đặt BD = x (0 < x < 40) => CD = 40 - x. Ta có:
x40−x =75−x75+(40−x) (do EB = DE - BD; EC = DE + DC)
=> x. (115 - x) = (40 - x).(75 - x)
<=> 115x - x2 = 3000 - 115x + x2 <=> x2 - 115x + 1500 = 0
=> x = 100 (Loại) hoặc x = 15 (thoả mãn)
Vậy BD = 15 cm hoặc BD = 40 - 15 = 25 cm (Nếu ta đổi vị trí B và C cho nhau)
ABCEHD
+) Kẻ AE là phân giác ngoài của góc BAC
Mà AD là phân giác của góc BAC nên AD vuông góc với AE => tam giác EAD vuông tại A
+) Áp dụng ĐL Pi - ta go trong tam giác vuông AHD có: DH = √AD2−AH2=√452−362=27 cm
+) Áp dụng hệ thức lượng trong tam giác vuông EAD có: AD2 = DH. DE => DE = AD2 / DH = 452/ 27 = 75 cm
+)Áp dụng tính chất tia phân giác trong và ngoài tam giác có: BDDC =ABAC =EBEC
Đặt BD = x (0 < x < 40) => CD = 40 - x. Ta có:
x40−x =75−x75+(40−x) (do EB = DE - BD; EC = DE + DC)
=> x. (115 - x) = (40 - x).(75 - x)
<=> 115x - x2 = 3000 - 115x + x2 <=> x2 - 115x + 1500 = 0
=> x = 100 (Loại) hoặc x = 15 (thoả mãn)
Vậy BD = 15 cm hoặc BD = 40 - 15 = 25 cm (Nếu ta đổi vị trí B và C cho nhau)
ABCEHD
+) Kẻ AE là phân giác ngoài của góc BAC
Mà AD là phân giác của góc BAC nên AD vuông góc với AE => tam giác EAD vuông tại A
+) Áp dụng ĐL Pi - ta go trong tam giác vuông AHD có: DH = √AD2−AH2=√452−362=27 cm
+) Áp dụng hệ thức lượng trong tam giác vuông EAD có: AD2 = DH. DE => DE = AD2 / DH = 452/ 27 = 75 cm
+)Áp dụng tính chất tia phân giác trong và ngoài tam giác có: BDDC =ABAC =EBEC
Đặt BD = x (0 < x < 40) => CD = 40 - x. Ta có:
x40−x =75−x75+(40−x) (do EB = DE - BD; EC = DE + DC)
=> x. (115 - x) = (40 - x).(75 - x)
<=> 115x - x2 = 3000 - 115x + x2 <=> x2 - 115x + 1500 = 0
=> x = 100 (Loại) hoặc x = 15 (thoả mãn)
Vậy BD = 15 cm hoặc BD = 40 - 15 = 25 cm (Nếu ta đổi vị trí B và C cho nhau)
Đặt BD = x (x<40), CD= 40-x.
Kẻ phân giác ngoài AE (E thuộc BC)
ΔAHD vuông ⇒HD=27
ΔAED vuông, AH là đường cao ⇒DE=75
DBDC=EBEC( tính chất phân giác trong, ngoài)
⇔x40−x=75−x75+40−x
⇔x(115−x)=(75−x)(40−x)
x2−115x+1500=0
Giải ra x= 15 (n) hay x = 100(l)
a/ \(BD\) là đường phân giác \(\widehat{BAC}\)
\(\to\dfrac{DA}{DC}=\dfrac{BA}{BC}\) hay \(\dfrac{DA}{DC}=\dfrac{6}{10}=\dfrac{3}{5}\)
\(\to\dfrac{DA}{3}=\dfrac{DC}{5}=\dfrac{DA+DC}{3+5}=\dfrac{AC}{8}=\dfrac{8}{8}=1\)
\(\to\begin{cases}DA=3\\DC=5\end{cases}\)
b/ \(S_{\Delta ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.AH.BC\)
\(\to AB.AC=AH.BC\)
\(\to \dfrac{AB.AC}{BC}=AH=\dfrac{6.8}{10}=3,2(cm)\)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot10=6\cdot8=48\)
hay AH=4,8(cm)
Vậy: AH=4,8cm
a: Xét ΔABC có góc A+góc B+góc C=180 độ
=>góc A=180 độ-30 độ-20 độ=130 độ
Xét ΔABC có BC/sinA=AC/sinB=AB/sinC
=>AC/sin30=AB/sin20=30/sin130
=>\(AC\simeq19,58\left(cm\right);AB\simeq13,39\left(cm\right)\)
ΔAHB vuông tại H có sin B=AH/AB
=>AH/13,39=1/2
=>AH=6,695(cm)
b: Xét ΔABC có AD là phân giác
nên AB/AC=BD/DC
=>\(\dfrac{BD}{DC}=\dfrac{13.39}{19.58}\)
=>\(\dfrac{BD}{13.39}=\dfrac{CD}{19.58}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{13.39}=\dfrac{CD}{19.58}=\dfrac{BD+CD}{13.39+19.58}=\dfrac{30}{32.97}=\dfrac{1000}{1099}\)
=>\(BD\simeq12,18\left(cm\right);CD\simeq17,82\left(cm\right)\)