K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2019

a, (25-x).(x-3) =0

=> 25-x hoặc x-3 =0

=> x= 25 hoặc x=3 
Cậu biết viết dấu "hoặc" không vậy?
=> x thuộc 25 hoặc 3
Học tốt nhé

22 tháng 9 2019

\(\left(25-x\right)\cdot\left(x-3\right)=0\)

Ta có

\(\Rightarrow\orbr{\begin{cases}25-x=0\\x-3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=25\\x=3\end{cases}}}\)

13 tháng 7 2021

a) x(x - 5) - 4x + 20 = 0

\(\Leftrightarrow\) x(x - 5) - (4x + 20)

\(\Leftrightarrow\) x(x - 5) - 4(x - 5) = 0

\(\Leftrightarrow\) (x - 5)(x - 4)

Khi x - 5 = 0 hoặc x - 4 = 0

 \(\Leftrightarrow\) x = 5           \(\Leftrightarrow\) x = 4

 Vậy S = \(\left\{5;4\right\}\)

b) x(x + 6) - 7x - 42 = 0

 \(\Leftrightarrow\) x(x + 6) - (7x - 42) = 0

 \(\Leftrightarrow\) x(x + 6) - 7(x + 6) = 0

 \(\Leftrightarrow\) (x + 6)(x - 7) = 0

Khi x - 6 = 0 hoặc x - 7 = 0

   \(\Leftrightarrow\) x = 6           \(\Leftrightarrow\) x = 7

 Vậy S = \(\left\{6;7\right\}\)

c) x3 - 5x2 - x + 5 = 0

 \(\Leftrightarrow\) (x3 - 5x2) - (x + 5) = 0

 \(\Leftrightarrow\) x2 (x - 5) - (x - 5) = 0

 \(\Leftrightarrow\) (x - 5)(x2 - 1) = 0

 \(\Leftrightarrow\) (x - 5)(x - 1)(x + 1) = 0

 Khi x - 5 = 0 hoặc x - 1 = 0 hoặc x + 1 = 0

   \(\Leftrightarrow\) x = 5           \(\Leftrightarrow\) x = 1            \(\Leftrightarrow\) x = -1

 Vậy S = \(\left\{5;1;-1\right\}\)

d) 4x2 - 25 - (2x - 5)(3x + 7) = 0

\(\Leftrightarrow\) (2x)2 - 52 - (2x - 5)(3x + 7) = 0

\(\Leftrightarrow\) (2x - 5)(2x + 5) - (2x - 5)(3x + 7) = 0

\(\Leftrightarrow\) (2x - 5) \([\left(2x+5\right)-\left(3x+7\right)]\) = 0

\(\Leftrightarrow\) (2x - 5) ( 2x + 5 - 3x + 7) = 0

\(\Leftrightarrow\) (2x - 5)( -x + 12) = 0

Khi 2x - 5 = 0 hoặc -x + 12 = 0

  \(\Leftrightarrow\) 2x = 5             \(\Leftrightarrow\)   -x = -12

  \(\Leftrightarrow\) x = \(\dfrac{5}{2}\)              \(\Leftrightarrow\) x = 12

 Vậy S = \(\left\{\dfrac{5}{2};12\right\}\)

e) x3 + 27 + (x + 3)(x - 9) = 0

\(\Leftrightarrow\) x3 - 33 + (x + 3)(x - 9) = 0

\(\Leftrightarrow\) (x - 3)(x2 - 3x + 9) + (x + 3)(x - 9) = 0

\(\Leftrightarrow\) (x - 3) \(\left[\left(x^2-3x+9\right)+\left(x-9\right)\right]\) = 0

\(\Leftrightarrow\) (x - 3) ( x2 - 3x + 9 + x - 9) = 0

\(\Leftrightarrow\) (x - 3)(x2 - 2x) = 0

\(\Leftrightarrow\) (x - 3)x(x - 2)

 Khi x - 3 = 0 hoặc x = 0 hoặc x - 2 = 0

    \(\Leftrightarrow\) x = 3                            \(\Leftrightarrow\) x = 2

 Vậy S = \(\left\{3;0;2\right\}\)

 Chúc bạn học tốt

a) Ta có: \(x\left(x-5\right)-4x+20=0\)

\(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=4\end{matrix}\right.\)

b) Ta có: \(x\left(x+6\right)-7x-42=0\)

\(\Leftrightarrow x\left(x+6\right)-7\left(x+6\right)=0\)

\(\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=7\end{matrix}\right.\)

16 tháng 10 2021

\(1,\\ a,\Leftrightarrow x-\dfrac{1}{3}=0\Leftrightarrow x=\dfrac{1}{3}\\ b,\Leftrightarrow\left[{}\begin{matrix}x-4=4\\x-4=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=0\end{matrix}\right.\\ c,\Leftrightarrow2x+1=-2\Leftrightarrow x=-\dfrac{3}{2}\\ 2,\\ a,=1\\ b,=\left(\dfrac{13}{4}\right)^2=\dfrac{169}{16}\\ c,=\left(-\dfrac{7}{4}\right)^2=\dfrac{49}{16}\\ d,=\left(\dfrac{3}{7}\right)^{20}:\left(\dfrac{3}{7}\right)^{12}=\left(\dfrac{3}{7}\right)^8=...\\ e,=\left(3\cdot5\cdot\dfrac{2}{3}\right)^2=10^2=100\)

23 tháng 2 2023

a: =>(2x-5x-1)(2x+5x+1)=0

=>(-3x-1)(7x+1)=0

=>x=-1/3 hoặc x=-1/7

b: =>(5x-5)^2-(x+2)^2=0

=>(5x-5-x-2)(5x-5+x+2)=0

=>(4x-7)(6x-3)=0

=>x=1/2 hoặc x=7/4

c: =>(x^2+4x-1-x^2+3x-2)(x^2+4x-1+x^2-3x+2)=0

=>(7x-3)(2x^2+x+1)=0

=>7x-3=0

=>x=3/7

a: =>(x-5)(x+5)+(x-5)(3x-15)=0

=>(x-5)(x+5+3x-15)=0

=>(x-5)(4x-10)=0

=>x=5 hoặc x=5/2

c: =>x^3-3x^2+2x^2-6x-8x+24=0

=>(x-3)(x^2+2x-8)=0

=>(x-3)(x+4)(x-2)=0

=>\(x\in\left\{3;-4;2\right\}\)

30 tháng 7 2021

a)   \(\left(2x-1\right)^2-25=0\)

⇔ \(\left(2x-1\right)^2-5^2=0\)

⇔  \(\left(2x-1-5\right)\left(2x-1+5\right)=0\)

⇒  \(2x-1-5=0\) hoặc \(2x-1+5=0\)

⇔      \(x=3\)           hoặc  \(x=-2\)

30 tháng 7 2021

Bài 1: Tìm x

a) (2x-1) ² - 25 = 0

<=> (2x-1)2 =  25

<=>  2x-1 = 5  hay 2x-1 =-5

<=>  2x= 6      hay  2x=-4

<=>   x=3     hay    x= -2

Vậy S={3; -2}
b) 3x (x-1) + x - 1 = 0

<=> (x-1)(3x+1)=0

<=> x-1=0  hay  3x+1=0

<=> x=1 hay 3x=-1

<=> x=1 hay x=\(\dfrac{-1}{3}\)

Vậy S={1;\(\dfrac{-1}{3}\)}

c) 2(x+3) - x ² - 3x = 0

<=> 2(x+3)- x(x+3)=0

<=> (x+3)(2-x)=0

<=> x+3=0 hay 2-x=0

<=> x=-3  hay  x=2

Vậy S={-3;2}
d) x(x - 2) + 3x - 6 = 0

<=> x(x-2)+3(x-2)=0

<=> (x-2)(x+3)=0

<=> x-2=0 hay x+3=0

<=> x=2 hay x=-3

Vậy S={2;-3}
e) 4x ² - 4x +1 = 0

<=> (2x-1)2=0

<=> 2x-1=0

<=> 2x=1

<=> x=\(\dfrac{1}{2}\)

Vậy S={\(\dfrac{1}{2}\)}
f) x +5x2  = 0

<=> x(1+5x)=0

<=>x=0 hay 1+5x=0

<=> x=0 hay 5x=-1

<=> x=0 hay x= \(\dfrac{-1}{5}\)

Vậy S={0;\(\dfrac{-1}{5}\)}
g) x ²+ 2x -3 = 0

<=> x2-x+3x-3=0

<=> x(x-1)+3(x-1)=0

<=>  (x-1)(x+3)=0

<=> x-1=0 hay x+3=0

<=> x=1  hay x=-3

Vậy S={1;-3}

 

21 tháng 7 2021

Bài 10:

a) (x+2)2 -x(x+3) + 5x = -20

=> x2 + 4x + 4 - x2 - 3x + 5x = -20

=> 6x = -20 + (-4)

=> 6x = -24

=> x = -4

b) 5x3-10x2+5x=0   

=>5x(x2-2x+1)=0

=>5x(x-1)2 =0

=> 5x=0 hoặc (x-1)2=0

=>x=0 hoặc x=1

c) (x- 1)- (x+ x+ 1)(x- 1) = 0

=> (x2 - 1)[(x- 1)2 -  (x+ x+ 1)] = 0

<=> (x2 - 1)(x4 - 2x2 + 1 - x- x- 1) = 0

<=>  (x2 - 1)(-3x2) = 0

<=> (x2 - 1)=0 hoặc (-3x2) =0

<=> x2=1 hoặc x2=0

<=> x=−1;1 hoặc x=0

d)

(x+1)3−(x−1)3−6(x−1)2=-19

⇔x3+3x2+3x+1−(x3−3x2+3x−1)−6(x2−2x+1)+19=0

⇔x3+3x2+3x+1−x3+3x2−3x+1−6x2+12x−6+19=0

⇔12x+13=0⇔12x+13=0

⇔12x=-13

⇔x=-23/12

Học tốt nhé:333banhqua

 

 

 

AH
Akai Haruma
Giáo viên
12 tháng 5 2021

Lời giải:
a) $|4x^2-25|=0$

$\Leftrightarrow 4x^2-25=0$

$\Leftrightarrow (2x-5)(2x+5)=0$

$\Rightarrow x=\pm \frac{5}{2}$

b) 

$|x-2|=3$

\(\Rightarrow \left[\begin{matrix} x-2=-3\\ x-2=3\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=-1\\ x=5\end{matrix}\right.\)

c) 

\(|x-3|=2x-1\Rightarrow \left\{\begin{matrix} 2x-1\geq 0\\ \left[\begin{matrix} x-3=2x-1\\ x-3=1-2x\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ \left[\begin{matrix} x=-2\\ x=\frac{4}{3}\end{matrix}\right.\end{matrix}\right.\Rightarrow x=\frac{4}{3}\)

d) 

$|x-5|=|3x-2|$

\(\Rightarrow \left[\begin{matrix} x-5=3x-2\\ x-5=2-3x\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{-3}{2}\\ x=\frac{7}{4}\end{matrix}\right.\)

12 tháng 12 2017

a)Để học tốt Toán 9 | Giải bài tập Toán 9

b)Để học tốt Toán 9 | Giải bài tập Toán 9

c)Để học tốt Toán 9 | Giải bài tập Toán 9

d)Để học tốt Toán 9 | Giải bài tập Toán 9

Bài 2: 

a: =>4x(x+5)=0

=>x=0 hoặc x=-5

b: =>(x+3)(x-3)=0

=>x=-3 hoặc x=3

20 tháng 7 2021

a. `4x^2-20x+25=0`

`<=>(2x)^2-2.2x.5 +5^2=0`

`<=>(2x-5)^2=0`

`<=>2x-5=0`

`<=>x=5/2`

b. `(x-5)(x+5)-(x-3)^2=2(x-7)`

`<=>x^2-25-x^2+6x-9=2x-14`

`<=>6x-34=2x-14`

`<=>4x=20`

`<=>x=5`

20 tháng 7 2021

\(a,4x^2-20x+25=0\Leftrightarrow\left(2x\right)^2-2.2x.5+5^2=0\)

\(\Leftrightarrow\left(2x-5\right)^2=0\Leftrightarrow x=\dfrac{5}{2}\)

b, \(\left(x-5\right)\left(x+5\right)-\left(x-3\right)^2=2\left(x-7\right)\)

\(\Leftrightarrow x^2-25-x^2+6x-9=2x-14\Leftrightarrow4x=20\Leftrightarrow x=5\)