Cho a>1 b>1 Tim GTNN cua \(A=\frac{a^2}{a-1}+\frac{b^2}{b-1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(J=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}+\frac{1}{\frac{2\left(a+b\right)^2}{4}}=\frac{6}{\left(a+b\right)^2}\ge6\)
\(\Rightarrow J_{min}=6\) khi \(a=b=\frac{1}{2}\)
\(A=\frac{3}{a^2+b^2}+\frac{2}{ab}\)
\(=\frac{3}{a^2+b^2}+\frac{4}{2ab}\ge\frac{\left(\sqrt{3}+2\right)^2}{\left(a+b\right)^2}\)(cauchy-schwarz dạng engel)
\(=7+4\sqrt{3}\)
\(M=a+b+\frac{1}{a}+\frac{1}{b}\ge a+b+\frac{4}{a+b}=a+b+\frac{1}{a+b}+\frac{3}{a+b}\)
\(\Rightarrow M\ge2\sqrt{\frac{a+b}{a+b}}+3=5\)
\(\Rightarrow M_{min}=5\) khi \(a=b=\frac{1}{2}\)
\(\sqrt{a+b}.\sqrt{\frac{1}{a}+\frac{1}{b}}=\sqrt{\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)}\)
\(=\sqrt{2+\frac{a}{b}+\frac{b}{a}}\ge\sqrt{2+2\sqrt{\frac{a}{b}.\frac{b}{a}}}=\sqrt{2+2}=2\)
Dấu bằng xảy ra khi a = b.
Ta co:\(1\ge a+b\ge2\sqrt{ab}\Rightarrow ab\le\frac{1}{4}\)
Dat \(P=a^2+b^2+\frac{1}{a^2}+\frac{1}{b^2}\)
\(=a^2+\frac{1}{16a^2}+b^2+\frac{1}{16b^2}+\frac{15}{16}\left(\frac{1}{a^2}+\frac{1}{b^2}\right)\)
\(=a^2+\frac{1}{16a^2}+b^2+\frac{1}{16b^2}+\frac{15}{16}.\frac{a^2+b^2}{a^2b^2}\ge\frac{1}{2}+\frac{1}{2}+\frac{15}{16}.\frac{2}{ab}\ge1+\frac{15}{16}.\frac{2}{\frac{1}{4}}=\frac{17}{2}\)
Dau '=' xay ra \(a=b=\frac{1}{2}\)
Vay \(P_{min}=\frac{17}{2}\)khi \(a=b=\frac{1}{2}\)