K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 9 2019

\(P=a+ab+2abc=a+\frac{1}{2}a.4b\left(\frac{1}{2}+c\right)\le a+\frac{1}{2}a.\left(b+\frac{1}{2}+c\right)^2\)

\(P\le a+\frac{1}{2}a\left(3-a+\frac{1}{2}\right)^2=a+\frac{1}{2}a\left(\frac{7}{2}-a\right)^2\)

\(P\le\frac{1}{2}a^3-\frac{7}{2}a^2+\frac{57}{8}a\)

\(P\le\frac{1}{8}\left(4a^3-28a^2+57a-36\right)+\frac{9}{2}\)

\(P\le\frac{1}{8}\left(2a-3\right)^2\left(a-4\right)+\frac{9}{2}\)

Do \(a+b+c=3\Rightarrow a< 3\Rightarrow a-4< 0\)

\(\Rightarrow\frac{1}{8}\left(2a-3\right)^2\left(a-4\right)< 0\Rightarrow P\le\frac{9}{2}\)

Dấu "=" xảy ra khi \(a=\frac{3}{2}\) ; \(\left\{{}\begin{matrix}\frac{3}{2}+b+c=3\\b=c+\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow b=...;c=...\)

10 tháng 1 2017

Ta có: \(a^2+bc\ge2\sqrt{a^2bc}=2a\sqrt{bc}\)\(\Rightarrow\frac{1}{a^2+bc}\le\frac{1}{2a\sqrt{bc}}\)

Tương tự ta có:

\(\frac{1}{b^2+ac}\le\frac{1}{2b\sqrt{ac}};\frac{1}{c^2+ab}\le\frac{1}{2c\sqrt{ab}}\)

Cộng theo vế ta có:

\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\le\frac{1}{2a\sqrt{bc}}+\frac{1}{2b\sqrt{ac}}+\frac{1}{2c\sqrt{ab}}\)

\(\Leftrightarrow\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\le\frac{\sqrt{bc}}{2abc}+\frac{\sqrt{ac}}{2abc}+\frac{\sqrt{ab}}{2abc}\)

\(\Leftrightarrow\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\le\frac{\sqrt{bc}+\sqrt{ac}+\sqrt{ab}}{2abc}\le\frac{a+b+c}{2abc}\)

Đẳng thức xảy ra khi \(a=b=c\)

29 tháng 7 2020

dễ mà ? 

Theo BĐT Cauchy cho 2 số ta có :

\(b^2+c^2\ge2bc< =>\frac{a^2}{b^2+c^2}\le\frac{a^3}{2abc}\)

Tương tự ta được :\(\frac{b^2}{c^2+a^2}\le\frac{b^3}{2abc}\) ; \(\frac{c^2}{a^2+b^2}\le\frac{c^3}{2abc}\)

Cộng theo vế các bất đẳng thức cùng chiều :

\(\frac{a^2}{b^2+c^2}+\frac{b^2}{a^2+c^2}+\frac{c^2}{a^2+b^2}\le\frac{a^3+b^3+c^3}{2abc}\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)

Vậy ta có điều phải chứng minh 

20 tháng 3 2020

Giả sử b=  min {a,b,c}

\(VT\ge\frac{a^3+b^3+c^3}{\frac{2\left(a+b+c\right)^3}{27}}+\frac{1}{2}\left(\Sigma\frac{\left(a+b\right)^2}{ab+c^2}+\Sigma\frac{\left(a-b\right)^2}{ab+c^2}\right)\)

\(\ge\left[\frac{27\left(a^3+b^3+c^3\right)}{2\left(a+b+c\right)^3}+\frac{2\left(a+b+c\right)^2}{\left(ab+bc+ca+a^2+b^2+c^2\right)}\right]\)

Sau khi quy đồng ta cần chứng minh biểu thức sau đây không âm:

Đó là điều hiển nhiên vì b = min {a,b,c}

14 tháng 3 2018

ÁP dụng BĐT cô-si, ta có \(a^3+b^3+c^3\ge3abc\Rightarrow\frac{a^3+b^3+c^3}{2abc}\ge\frac{3}{2}\)

Mà \(ab\le\frac{a^2+b^2}{2}\Rightarrow\frac{a^2+b^2}{c^2+ab}\ge\frac{2\left(a^2+b^2\right)}{2c^2+a^2+b^2}\)

Tương tự, ta có 

\(\frac{a^2+b^2}{c^2+ab}+\frac{b^2+c^2}{a^2+bc}+\frac{c^2+a^2}{b^2+ac}\ge2\left(\frac{a^2+b^2}{a^2+c^2+b^2+c^2}+...\right)\)

Đặt \(\left(a^2+b^2;...\right)=\left(x;y;z\right)\)

Ta có VT\(\ge\frac{3}{2}+2\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)=\frac{3}{2}+2\left(\frac{x^2}{xy+zx}+\frac{y^2}{ỹ+yz}+\frac{z^2}{zx+zy}\right)\)

=> \(VT\ge\frac{3}{2}+2.\frac{\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)}\ge\frac{3}{2}+3=\frac{9}{2}\)

=> \(A\ge\frac{9}{2}\left(ĐPCM\right)\)

Dấu = xảy ra <=> a=b=c>0