K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2019
bạn ơi đề sai ak
19 tháng 9 2019

Mk sửa rồi đấy

19 tháng 9 2019

a, AH là đường cao của tam giác ABC (gt) 

Tam giác ABC vuông cân tại A (gt)

=> AH đồng thời là đường phân giác của tam giác ABC (đl)

=> góc HAB = 1/2 góc BAC (đl)

mà góc BAC = 90 do tam giác ABC vuông cân tại A (gt)

=> góc HAB = 90 : 2 = 45      (1)

HE là phân giác của góc CHA (gt)

=> góc EHA = 1/2 góc CHA (Đl)

mà góc CHA = 90 do AH là đường cao (gt)

=> góc EHA = 90 : 2 = 45    (2)

(1)(2) => góc EHA = góc HAB = 45 mà 2 góc này sole trong

=> EH // AD (đl) 

xét tứ giác ADHE 

=> ADHE là hình thang

b, chứng minh đường trung bình

20 tháng 11 2017

A B C

Vì tam giác ABC cân có AH là đường cao

nên AH đồng thời là đường phân giác

\(\Rightarrow\widehat{HAB}=\widehat{HAC}\)

Ta có \(AH\perp BC\)

Mà HD và HE lần lượt là các đường phân giác 

nêngócAHD=AHE

Suy ra tam giác AHD=AHE ( góc cạnh góc) ( bạn tự chứng minh)

nên AD=AE

Chứng minh AE=EH( tự chứng minh)

Mà HE=HD do tam giác AHD VÀ tam giác AHE bằng nhau

nên AE=EH=DH=AD

Vậy AEDH là hình thoi

b) Chứng minh AE=EC

                         AD=DB

Aps dụng tính chất đường trung bình suy ra dpcm

12 tháng 12 2023

chịu :))
 

a: Xét tứ giác ADHE có 

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

Do đó: ADHE là hình chữ nhật

16 tháng 12 2023

a: Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

b: Ta có: ADHE là hình chữ nhật

=>AD//HE và AD=HE

Ta có: AD//HE

F\(\in\)HE

Do đó: AD//HF

Ta có: AD=HE

HE=EF

Do đó: AD=EF

Xét tứ giác ADEF có

AD//EF

AD=EF

Do đó: ADEF là hình bình hành

c: ta có: AEHD là hình chữ nhật

=>\(\widehat{AED}=\widehat{AHD}\)

mà \(\widehat{AHD}=\widehat{ABC}\left(=90^0-\widehat{ACB}\right)\)

nên \(\widehat{AED}=\widehat{ABC}\)

Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên MA=MB=MC

Ta có: MA=MC

=>\(\widehat{MAC}=\widehat{MCA}\)

Ta có: \(\widehat{AED}+\widehat{MAC}\)

\(=\widehat{ABC}+\widehat{ACB}=90^0\)

=>AM\(\perp\)ED

mà ED//AF(ADEF là hình bình hành)

nên AM\(\perp\)AF

14 tháng 12 2023

a) Tứ giác ADHE là hình chữ nhật.

- Vì AD vuông góc với AB và HE vuông góc với AC (do HD và HE lần lượt là đường cao của tam giác ABC), nên ADHE là hình chữ nhật.

 

b) Lấy điểm F sao cho E là trung điểm của HF.

- Vì E là trung điểm của HF, nên EF = FH.

- Ta cũng có HE = EA (do E là trung điểm của HF và EA).

- Từ đó, ta có EF = FH = HE = EA.

- Vậy, tứ giác ADEF có các cạnh đối diện bằng nhau, là đặc điểm của hình bình hành.

 

c) Gọi M là trung điểm của BC. Chúng ta cần chứng minh AM vuông góc với AF.

- Ta biết rằng E là trung điểm của HF (theo phần b).

- Vì M là trung điểm của BC, nên BM = MC.

- Từ đó, ta có AM = BM = MC.

- Vì EF = FH = HE = EA (theo phần b), nên tứ giác ADEF là hình bình hành.

- Do đó, ta có AF song song với DE.

- Vì AM = MC và AF song song với DE, nên AM vuông góc với AF.

 

Vậy, ta đã chứng minh được AM vuông góc với AF.

22 tháng 11 2017

a)  Tứ giác ADHE là hình chữ nhật vì có 3 góc vuông \(\widehat{A}\)\(\widehat{D}\)=\(\widehat{E}\)= 900

b)  Tứ giác ADHE là hình chữ nhật nên DE = AH

Ap dụng định lý Pytago vào tam giác vuông ABH ta có:

            AH2 + BH2 = AB2 

\(\Rightarrow\)AH2 = AB2 - BH2

\(\Rightarrow\)AH2 = 102 - 62 = 64

\(\Rightarrow\)AH = \(\sqrt{64}\)= 8

Vì AH = DE nên DE = 8cm

19 tháng 2 2020

lên gg mà tìm

a: Xét tứ giác ADHE có 

\(\widehat{EAD}=\widehat{ADH}=\widehat{AEH}=90^0\)

Do đó: ADHE là hình chữ nhật

13 tháng 10 2022

a: Xét tứ giác ADHE có góc ADH=góc AEH=góc EAD=90 độ

nên ADHE là hình chữ nhật

=>DE=AH=6cm

b: Gọi O là giao của AH và DE

=>O là trung điểm chung của AH và DE
mà AH=DE

nên OA=OH=OD=OE

Ta có: góc OHD+góc MHD=90 độ

góc ODH+góc MDH=90 độ

mà góc OHD=góc ODH

nên góc MHD=góc MDH

=>ΔMHD cân tại M và góc MDB=góc MBD

=>ΔMBD cân tại M

=>MH=MB

=>M là trung điểm của HB

Cm tương tự, ta được N là trung điểm của HC

=>MN=1/2BC

d: \(AD\cdot AB=AH^2\)

\(AE\cdot AC=AH^2\)

Do đó: \(AD\cdot AB=AE\cdot AC\)

20 tháng 12 2023

A B C H D E K I

a/

Ta có

\(AB\perp AC\Rightarrow AD\perp AC;HE\perp AC\) => AD//HE

\(AC\perp AB\Rightarrow AE\perp AB,HD\perp AB\) => AE//HD

=> ADHE là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

Mà \(\widehat{A}=90^o\) 

=> ADHE là hình CN

b/

Xét tg vuông ADH có

\(DH=\sqrt{AH^2-AD^2}\) (Pitago)

\(\Rightarrow DH=\sqrt{5^2-4^2}=3cm\)

\(\Rightarrow S_{ADHE}=AD.DH=4.3=12cm^2\)

c/

Ta có

DB=DI (gt); DH=DK (gt) => BKIH là hbh (Tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)

Xét tg AKH có

\(HD\perp AB\Rightarrow AD\perp HK\) (1)

BKIH là hình bình hành (cmt) => KI//BH (cạn đối hbh)

Mà \(AH\perp BC\left(gt\right)\Rightarrow BH\perp AH\)

\(\Rightarrow KI\perp AH\) (2)

Từ (1) và (2) => I là trực tâm của tg AKH => \(AK\perp HI\) (trong tg 3 đường cao đồng quy)