K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2021

Với a, b, c là các số thực ta có: \(\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)=\dfrac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\)

\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\).

Chọn \(a=x^2;b=y^2;c=z^2\) ta có \(x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\). (1)

Chọn \(a=xy;b=yz;c=zx\) ta có \(x^2y^2+y^2z^2+z^2x^2=\left(xy\right)^2+\left(yz\right)^2+\left(zx\right)^2\ge xy.yz+yz.zx+zx.xy=xyz\left(x+y+z\right)\). (2)

Từ (1), (2) ta có đpcm.

10 tháng 5 2017

không mất tính tổng quát, giả sử \(0< a\le b\le c\in N\)

\(xyz=x+y+z+5\le3z+5\Leftrightarrow xy\le3+\dfrac{5}{z}\le8\)

mà x,y thuộc N* \(\Rightarrow xy\in\left\{1;2;3;4;5;6;7;8\right\}\)

...bla bla

13 tháng 1 2016

Ngồi tick kiếm "tiền"

Ngồi làm mất thời gian

AI thấy đúng thì tick nhé!!!

19 tháng 1 2017

Giải:

Giả sử: 1<=x<=y<=z.Khi đó từ phương trình suy ra xyz=x+y+z<=3z suy ra xy <= 3

Suy ra: x.y=\(\left\{1,2,3\right\}\)

Nếu x.y=1 thì x=y=1 suy ra 2+z+z (vô lý )

Nếu x.y=2 suy ra x=1,y=2,z=3

Nếu x.y=3 suy ra x=1,y=3,z=2 <y (trái với giả sử)

Vậy x,y,z là hoán vị của (1;2;3)