K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

=(x^2-y^2)(X^2+y^2)(X^4+y^4)(x^8+y^8)

=(x^4-y^4)(x^4+y^4)(x^8+y^8)

=(x^8-y^8)(x^8+y^8)

=x^16 - y^ 16

IF you can , give my answer a k

18 tháng 9 2019

Bạn áp dụng hằng đẳng thức x2 - y2 = (x-y)(x+y) 

\(\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\left(x^8+y^8\right)\)

\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\left(x^8+y^8\right)\)

\(=\left(x^4-y^4\right)\left(x^4+y^4\right)\left(x^8+y^8\right)\)

\(=\left(x^8-y^8\right)\left(x^8+y^8\right)=x^{16}-y^{16}\)

2 tháng 10 2017

Ta có \(x-y=1\)

\(=>x+y=\left(x+y\right).\left(x-y\right)\)
\(A=\left(x+y\right).\left(x-y\right).\left(x^2+y^2\right).\left(x^4+y^4\right)\)

\(A=\left(x^2-y^2\right).\left(x^2+y^2\right).\left(x^4+y^4\right)\)

\(A=\left(x^4-y^4\right).\left(x^4+y^4\right)\)

\(A=x^8-y^8\)

C
18 tháng 9 2019

\(-\left[\left(x-y\right)\left(x^2-y^2\right)\left(x^4-y^4\right)\left(x^8-y^8\right)\left(x^{16}-y^{16}\right)\right]\)

\(-\left[\left(x-y\right)\left(x-y\right)^2\left(x-y\right)^4\left(x-y\right)^8\left(x-y\right)^{16}\right]\)

\(-\left(1\cdot1^2\cdot1^4\cdot1^8\cdot1^{16}\right)\)

= -1

20 tháng 11 2023

1: \(C=\left(x-\dfrac{4xy}{x+y}+y\right):\left(\dfrac{x}{x+y}+\dfrac{y}{y-x}+\dfrac{2xy}{x^2-y^2}\right)\)

\(=\dfrac{\left(x+y\right)^2-4xy}{x+y}:\left(\dfrac{x}{x+y}-\dfrac{y}{x-y}+\dfrac{2xy}{\left(x-y\right)\left(x+y\right)}\right)\)

\(=\dfrac{x^2+2xy+y^2-4xy}{x+y}:\dfrac{x\left(x-y\right)-y\left(x+y\right)+2xy}{\left(x+y\right)\left(x-y\right)}\)

\(=\dfrac{x^2-2xy+y^2}{x+y}:\dfrac{x^2-xy-xy-y^2+2xy}{\left(x+y\right)\left(x-y\right)}\)

\(=\dfrac{\left(x-y\right)^2}{x+y}\cdot\dfrac{x^2-y^2}{x^2-y^2}=\dfrac{\left(x-y\right)^2}{x+y}\)

2: \(\left(x^2-y^2\right)\cdot C=-8\)

=>\(\left(x-y\right)\left(x+y\right)\cdot\dfrac{\left(x-y\right)^2}{x+y}=-8\)

=>\(\left(x-y\right)^3=-8\)

=>x-y=-2

=>x=y-2

\(M=x^2\left(x+1\right)-y^2\left(y-1\right)-3xy\left(x-y+1\right)+xy\)

\(=\left(y-2\right)^2\left(y-2+1\right)-y^2\left(y-1\right)-3xy\left(-2+1\right)+xy\)

\(=\left(y-1\right)\left[\left(y-2\right)^2-y^2\right]+3xy+xy\)

\(=\left(y-1\right)\left(-4y+4\right)+4xy\)

\(=-4\left(y-1\right)^2+4y\left(y-2\right)\)

\(=-4y^2+8y-4+4y^2-8y\)
=-4

20 tháng 11 2023

Em cảm ơn ạ.

22 tháng 10 2023

\(\left(x+y\right)^2+\left(x-y\right)^2+\left(x-y\right)\left(x+y\right)-3x^2\)

\(=\left(x^2+2xy+y^2\right)+\left(x^2-2xy+y^2\right)+\left(x^2-y^2\right)-3x^2\)

\(=x^2+2xy+y^2+x^2-2xy+y^2+x^2-y^2-3x^2\)

\(=3x^2+y^2-3x^2\)

\(=y^2\)

28 tháng 6 2016

1)  2xy2+x2y4+1=(xy2)2+2xy2.1+12=(xy2+1)2

2)

a)2(x-y)(x+y)+(x+y)2+(x-y)2=(x+y+x-y)2=(2x)2=4x2

b)(x-y+z)2+(z-y)2+2(x-y+z)(y-z)

=(x-y+z)2+(y-z)2+2(x-y+z)(y-z)

=(x-y+z+y-z)2

=x2

26 tháng 5 2017

Q=\(\left(x-y\right)^3+x^3+3x^2y+3xy^2-\left(x-y\right)^3-3x^2y-3xy^2\)

Q=\(x^3+y^3\)

26 tháng 5 2017

P=\(\left(5x-1-5x-4\right)^2\)

P=25

6 tháng 6 2017

\(a,2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2\)

\(=2x^2+2y^2+x^2+2xy+y^2+x^2-2xy+y^2=3\left(x^2+y^2\right)\)\(b,\left(5x-1\right)+2\left(1-5x\right)\left(4x+5\right)+\left(5x+4\right)\)\(=\left[\left(5x-1\right)-\left(5x+4\right)\right]^2=25\)

6 tháng 6 2017

c)\(Q=\left(x-y\right)^3+\left(x+y\right)^3+\left(x-y\right)^3-3xy\left(x+y\right)\)

\(=x^3-3x^2y+3xy^2-y^3+x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3-3xy^2-3x^2y\)

\(=x^3+y^3\)

d)\(P=12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(2P=\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(2P=\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(2P=\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(2P=\left(5^{16}-1\right)\left(5^{16}+1\right)\)

\(2P=5^{32}-1\Rightarrow P=\dfrac{5^{32}-1}{2}\)

a: \(\left(x-2y\right)^2+\left(x-\dfrac{1}{2}y\right)\left(x+\dfrac{1}{2}y\right)\)

\(=x^2-4xy+4y^2+x^2-\dfrac{1}{4}y^2\)

\(=2x^2-4xy+\dfrac{15}{4}y^2\)

b: \(\left(x-2\right)^2+\left(x+3\right)^2-2\left(x-1\right)\left(x+1\right)\)

\(=x^2-4x+4+x^2+6x+9-2\left(x^2-1\right)\)

\(=2x^2+2x+13-2x^2+2\)

=2x+15

2 tháng 10 2021

a) \(=x^2-4xy+4y^2+x^2-\dfrac{1}{4}y^2=2x^2-4xy+\dfrac{15}{4}y^2\)

b) \(=x^2-4x+4+x^2+6x+9-2x^2+2\)

\(=2x+15\)