giải giúp e với ạ hãy so sánh
A=3+2+2^2+2^3+....+2^41+2^42, B=3^21
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(3\sqrt{7}\right)^2=63>28=\left(\sqrt{28}\right)^2\) hoặc \(3\sqrt{7}>2\sqrt{7}=\sqrt{28}\)
a) \(2=\sqrt{4}>\sqrt{3}\)
b) \(6=\sqrt{36}< \sqrt{41}\)
c) \(7=\sqrt{49}>\sqrt{47}\)
a) \(1=\sqrt{1}< \sqrt{2}\)
b) \(2=\sqrt{4}>\sqrt{3}\)
c) \(6=\sqrt{36}< \sqrt{41}\)
d) \(7=\sqrt{49}>\sqrt{47}\)
e) \(2=1+1=\sqrt{1}+1< \sqrt{2}+1\)
f) \(1=2-1=\sqrt{4}-1>\sqrt{3}-1\)
g) \(2\sqrt{31}=\sqrt{4.31}=\sqrt{124}>\sqrt{100}=10\)
h) \(\sqrt{3}>0>-\sqrt{12}\)
i) \(5=\sqrt{25}< \sqrt{29}\)
\(\Rightarrow-5>-\sqrt{29}\)
A=1+1/2+1+1/6+1+1/12+...+1+1/90=
=9+1/2+1/6+1/12+...+1/90
1/2+1/6+1/12+...+1/90=
1/1x2+1/2x3+2/3x4+...+1/9x10=
\(=\dfrac{2-1}{1x2}+\dfrac{3-2}{2x3}+\dfrac{4-3}{3x4}+...+\dfrac{10-9}{9x10}=\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}=\)
\(=1-\dfrac{1}{10}=\dfrac{9}{10}\)
\(\Rightarrow A=9+\dfrac{9}{10}=9\dfrac{9}{10}\)
\(B=\dfrac{3}{2}-\dfrac{2}{21}-\left\{\dfrac{7}{12}-\left[\dfrac{15}{21}-\left(\dfrac{1}{3}-\dfrac{5}{4}\right)-\left(\dfrac{2}{7}+\dfrac{1}{3}\right)\right]\right\}\)
\(B=\dfrac{3}{2}-\dfrac{2}{21}-\left\{\dfrac{7}{12}-\left[\dfrac{15}{21}-\left(-\dfrac{11}{12}\right)-\dfrac{13}{21}\right]\right\}\)
\(B=\dfrac{3}{2}-\dfrac{2}{21}-\left\{\dfrac{7}{12}-\dfrac{85}{84}\right\}\)
\(B=\dfrac{3}{2}-\dfrac{2}{21}-\left(-\dfrac{3}{7}\right)\)
\(B=\dfrac{11}{6}\)
\(=\dfrac{3}{2}-\dfrac{2}{21}-\dfrac{7}{12}+\left[\dfrac{15}{21}-\dfrac{1}{3}+\dfrac{5}{4}-\dfrac{2}{7}-\dfrac{1}{3}\right]\)
=11/12-2/21+5/7-2/3+5/4-2/7
=11/12-2/3+5/4-2/21+3/7
=11/12-8/12+15/12-2/21+9/21
=18/12+7/21
=3/2+1/3
=9/6+2/6=11/6
a, A = \(\dfrac{3^{10}\times10+3^{10}\times6}{3^9\times2^4}\)
A = \(\dfrac{3^{10}\times\left(10+6\right)}{3^9\times2^4}\)
A = \(\dfrac{3^{10}\times16}{3^9\times16}\)
A = 3
c, C = \(\dfrac{36^{10}\times25^{15}}{30^8}\)
C = \(\dfrac{\left(6^2\right)^{10}.\left(5^2\right)^{15}}{30^8}\)
C = \(\dfrac{6^{20}.5^{30}}{6^8.5^8}\)
C = 612.522
a)
\(\dfrac{-2}{3}\)>\(\dfrac{5}{-8}\)
b)
\(\dfrac{398}{-412}\)<\(\dfrac{-25}{-137}\)
c)
\(\dfrac{-14}{21}\)<\(\dfrac{60}{72}\)