Tìm n là số tự nhiên, y là số nguyên sao cho 2^n +3=y^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BAI 1
ta co n+6 chia het cho n
ma n chia het cho n
suy ra 6 chia het cho n
ma n la mot so tu nhien nen
ta co n thuoc U(6)=1,2,3,6
vay n bang 1,2,3,6
bai 2
(2n-1).(y+3)=12
suy ra 2n-1 va y+3 thuoc uoc cua 12 =1,12,3,4,6,2
neu 2n-1 =1 suy ra n=1
thi y+3=12 suy ra y=9
neu 2n-1=12 suy ra n=11/2(ko thoa man )
neu 2n-1=3 suy ra n=2
thi y+3=4 suy ra y=1
neu 2n-1=4 ruy ra n=5/2( ko thoa man )
neu 2n-1=6 suy ra n=7/2( ko thoa man )
neu 2n-1=2 suy ra n=3/2 ( ko thoa man )
vay cac cap so n :y can tim la (2;1),(1;9)
Lần lượt xét các giá trị tự nhiên của n:
+ \(n=0\Rightarrow y^2=4\Rightarrow y=\pm2\)
+ \(n=1\Rightarrow y^2=5\)=> không có nghiệm nguyên
+ \(x\ge2\Rightarrow2^n⋮4\), do đó vế trái chia 4 dư 3, còn y lẻ nên vế phải chia 4 dư 1 => Mâu thuẫn
Vậy n=0 , \(y=\pm2\)