K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2019

3) Tìm x 

a) 2x = 16

=> 2x = 24

=> x = 4

Vậy x = 4

b) 2x + 3 + 2x = 144

=> 2x . 23 + 2x = 144

=> 2x . 8 + 2x = 144

=> 2x.(8 + 1) = 144

=> 2x.9 = 144

=> 2x = 144: 9

=> 2x = 16

=> 2x = 24

=> x = 4

Vậy x = 4

c) (2x + 1)3 = 8

=> (2x + 1)3 = 23

=> 2x + 1 = 2

=> 2x = 2 - 1

=> 2x = 1

=> x = 1 : 2

=> x = \(\frac{1}{2}\)

d) (x - 11)5 = 0

=> (x - 11)5 = 05

=> x - 11 = 0

=> x = 11 + 0

=> x = 11

e) x15 = x

=> x15 - x = 0

=> x.(x14 - 1) = 0

=> \(\orbr{\begin{cases}x=0\\x^{14}-1=0\end{cases}}\)

Nếu \(x^{14}-1=0\)

\(\Rightarrow x^{14}=1\)

\(\Rightarrow x^{14}=1^{14}\)

\(\Rightarrow x=\pm1\)

Vậy x = 0 ; x = 1 ; x = - 1

f) (24 - x)3 = 8

=> (24 - x)3 = 23

=> 24 - x = 2

=> x = 24 - 2

=> x = 22

Vậy x = 22

16 tháng 9 2019

a) 2x = 16

2x = 24

x = 4. Vậy x = 4.

b) 2x+3 + 2x = 144

2x+3 + 2x = 24+3 + 24

x = 4. Vậy x = 4.

c) (2x + 1)3 = 8

(2x + 1)3 = 23

2x + 1 = 2

2x = 2 - 1

2x = 1

x = 1 : 2

x = 1/2. Vậy x = 1/2.

d) (x - 11)5 = 0

(x - 11)5 = 05

x - 11 = 0

x = 0 + 11

x = 11. Vậy x = 11.

e) x15 = x

x = 1

f) (24 - x)3 = 8

(24 - x)3 = 23

24 - x = 2

x = 24 - 2

x = 22. Vậy x = 22.

28 tháng 9 2021

\(a,\Rightarrow\left(4x-1\right)^2=25=5^2=\left(-5\right)^2\\ \Rightarrow\left[{}\begin{matrix}4x-1=5\\4x-1=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-1\end{matrix}\right.\\ b,\Rightarrow2^x\left(1+2^3\right)=144\\ \Rightarrow2^x=144:9=16=2^4\Rightarrow x=4\\ c,\Rightarrow3^{2x+3}=3^{2\left(x+3\right)}\\ \Rightarrow2x+3=2x+6\Rightarrow0x=3\left(vô.lí\right)\\ \Rightarrow x\in\varnothing\)

15 tháng 11 2021

a) \(\left(2x-3\right)\left(x+2\right)-\left(4x-2\right)\left(x-5\right)=-16\)

\(\Rightarrow2x^2+x-6-4x^2+22x-10=-16\)

\(\Rightarrow2x^2-23x=0\Rightarrow x\left(2x-23\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{23}{2}\end{matrix}\right.\)

b) \(7x^2-7=x^2-2x+1\)

\(\Rightarrow7\left(x^2-1\right)-\left(x^2-2x+1\right)=0\)

\(\Rightarrow7\left(x-1\right)\left(x+1\right)-\left(x-1\right)^2=0\)

\(\Rightarrow\left(x-1\right)\left(7x+7-x+1\right)=0\Rightarrow2\left(x-1\right)\left(3x+4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{4}{3}\end{matrix}\right.\)

15 tháng 11 2021

a) \(\left(2x-3\right)\left(x+2\right)-\left(4x-2\right)\left(x-5\right)=-16\)

 \(2x^2+x-6-4x^2+22x-10=-16\)

 \(-2x^2+23x-16=-16\)

\(23x-2x^2=0\)

\(x\left(23-2x\right)=0\)

⇔ \(\left[{}\begin{matrix}x=0\\x=\dfrac{23}{2}\end{matrix}\right.\)

b) \(7x^2-7=x^2-2x+1\)

\(7\left(x^2-1\right)=\left(x-1\right)^2\)

\(7\left(x-1\right)\left(x+1\right)-\left(x-1\right)^2=0\)

\(\left(7x+7\right)\left(x-1\right)-\left(x-1\right)^2=0\)

\(\left(x-1\right)\left(7x+7-x+1\right)=0\)

\(\left(x-1\right)\left(6x+8\right)=0\)

⇔ \(\left[{}\begin{matrix}x=1\\x=-\dfrac{4}{3}\end{matrix}\right.\)

Bài 2 : Tìm x biết:a) 2x(x – 5) – x(3 + 2x) = 26               b) 5x(x – 1) = x – 1                  c) 2(x + 5) - x2 – 5x = 0                       d) (2x – 3)2 - (x + 5)2=0e) 3x3 – 48x = 0                                   f) x3 + x2 – 4x = 4g) (x – 1)(2x + 3) – x(x – 1) = 0          h) x2 – 4x + 8 = 2x – 1Bài 3: Sắp xếp rồi làm tính chia:a)   b)  Bài 4: Tìm a sao cho a)     Đa thức  x4 – x3 + 6x2 – x + a chia hết cho đa thức x2 – x + 5b)    Đa thức 2x3 – 3x2 + x + a chia...
Đọc tiếp

Bài 2 : Tìm x biết:

a) 2x(x – 5) – x(3 + 2x) = 26               b) 5x(x – 1) = x – 1                  

c) 2(x + 5) - x2 – 5x = 0                       d) (2x – 3)2 - (x + 5)2=0

e) 3x3 – 48x = 0                                   f) x3 + x2 – 4x = 4

g) (x – 1)(2x + 3) – x(x – 1) = 0          h) x2 – 4x + 8 = 2x – 1

Bài 3: Sắp xếp rồi làm tính chia:

a)  

b) 

Bài 4: Tìm a sao cho

a)     Đa thức  x4 – x3 + 6x2 – x + a chia hết cho đa thức x2 – x + 5

b)    Đa thức 2x3 – 3x2 + x + a chia hết cho đa thức x + 2.

Bài 5*: Chứng minh rằng biểu thức:

A = x(x - 6) + 10 luôn luôn dương với mọi x.

B = x2 - 2x + 9y2 - 6y + 3 luôn luôn dương với mọi x, y.

Bài 6* : Tìm GTLN (GTNN) của biểu thức sau :

A = x2 – 4x + 2019                                       B = 4x2 + 4x + 11             

C = 4x – x2 +1                                              D = 2020 – x2 + 5x

E =  (x – 1)(x + 3)(x + 2)(x + 6)                   F= - x2 + 4xy – 5y2 + 6y – 17

G = x2 – 4xy + 5y2 + 10x – 22y + 28

Bài 7: Cho  biểu thức   M  =

a/   Tìm điều kiện  để biểu thức  M có nghĩa ?

b/   Rút gọn biểu thức M ?               

c/   Tìm x nguyên để  M có giá trị nguyên.

d/   Tìm giá trị của M tại x = -2      

e/   Với giá trị nào của x thì M bằng 5.

Bài 8 : Cho biểu thức : M =

a)     Tìm điều kiện xác định và rút gọn biểu thức

b)    Tính giá trị của M khi x = 1; x = -1

c)     Tìm số tự nhiên x để M có giá trị nguyên.

Bài 9: Cho biểu thức

a/Tìm giá trị của x để giá trị của biểu thức C được xác định.  

b/Tìm x để C = 0.  

c/ Tính giá trị của C biết |2x -1| = 3

 

d/ Tìm x để C là số nguyên âm lớn nhất.                  

1

Bài 2: 

a: \(\Leftrightarrow2x^2-10x-3x-2x^2=26\)

=>-13x=26

hay x=-2

b: \(\Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\)

hay \(x\in\left\{1;\dfrac{1}{5}\right\}\)

c: \(\Leftrightarrow\left(x+5\right)\left(2-x\right)=0\)

hay \(x\in\left\{-5;2\right\}\)

9 tháng 10 2021

\(a,\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-\dfrac{1}{2}\end{matrix}\right.\\ b,\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\\ c,\Leftrightarrow2x^2-10x-3x-2x^2=26\\ \Leftrightarrow-13x=26\Leftrightarrow x=-2\\ d,\Leftrightarrow x^2-18x+16=0\\ \Leftrightarrow\left(x^2-18x+81\right)-65=0\\ \Leftrightarrow\left(x-9\right)^2-65=0\\ \Leftrightarrow\left(x-9+\sqrt{65}\right)\left(x-9-\sqrt{65}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=9-\sqrt{65}\\9+\sqrt{65}\end{matrix}\right.\)

\(e,\Leftrightarrow x^2-10x-25=0\\ \Leftrightarrow\left(x-5\right)^2-50=0\\ \Leftrightarrow\left(x-5-5\sqrt{2}\right)\left(x-5+5\sqrt{2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5+5\sqrt{2}\\x=5-5\sqrt{2}\end{matrix}\right.\\ f,\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\\ g,\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\\ \Leftrightarrow\left(2-x\right)\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\\ h,\Leftrightarrow x^2+2x+3x+6=0\\ \Leftrightarrow\left(x+3\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\\ i,\Leftrightarrow4x^2-12x+9-4x^2+4=49\\ \Leftrightarrow-12x=36\Leftrightarrow x=-3\)

\(j,\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\Leftrightarrow\left(x^2+1\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\x=-1\end{matrix}\right.\Leftrightarrow x=-1\\ k,\Leftrightarrow x^2\left(x-1\right)=4\left(x-1\right)^2\\ \Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

10 tháng 10 2021

c: Ta có: \(x^3-12x^2+48x-64=0\)

\(\Leftrightarrow x-4=0\)

hay x=4

10 tháng 10 2021

c: Ta có: \(x^3-12x^2+48x-64=0\)

\(\Leftrightarrow x-4=0\)

hay x=4

a) Ta có: \(\left(x-3\right)=\left(3-x\right)^2\)

\(\Leftrightarrow\left(x-3\right)^2-\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)

b) Ta có: \(x^3+\dfrac{3}{2}x^2+\dfrac{3}{4}x+\dfrac{1}{8}=\dfrac{1}{64}\)

\(\Leftrightarrow x^3+3\cdot x^2\cdot\dfrac{1}{2}+3\cdot x\cdot\dfrac{1}{4}+\left(\dfrac{1}{2}\right)^3=\dfrac{1}{64}\)

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^3=\left(\dfrac{1}{4}\right)^3\)

\(\Leftrightarrow x+\dfrac{1}{2}=\dfrac{1}{4}\)

hay \(x=-\dfrac{1}{4}\)

c) Ta có: \(8x^3-50x=0\)

\(\Leftrightarrow2x\left(4x^2-25\right)=0\)

\(\Leftrightarrow x\left(2x-5\right)\left(2x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{5}{2}\\x=-\dfrac{5}{2}\end{matrix}\right.\)

e) Ta có: \(x\left(x+3\right)-x^2-3x=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\)

f) Ta có: \(x^3+27+\left(x+3\right)\left(x-9\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\)

\(\Leftrightarrow x\left(x-2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-3\end{matrix}\right.\)

8 tháng 9 2021

\(a,3\left(2x-3\right)+2\left(2-x\right)=-3\\ \Leftrightarrow6x-9+4-2x=-3\\ \Leftrightarrow4x=2\\ \Leftrightarrow x=\dfrac{1}{2}\\ b,x\left(5-2x\right)+2x\left(x-1\right)=13\\ \Leftrightarrow5x-2x^2+2x^2-2x=13\\ \Leftrightarrow3x=13\\ \Leftrightarrow x=\dfrac{13}{3}\\ c,5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\\ \Leftrightarrow5x^2-5x-5x^2-3x+14=6\\ \Leftrightarrow-8x=-8\\ \Leftrightarrow x=1\\ d,3x\left(2x+3\right)-\left(2x+5\right)\left(3x-2\right)=8\\ \Leftrightarrow6x^2+9x-6x^2-11x+10=8\\ \Leftrightarrow-2x=-2\\ \Leftrightarrow x=1\)

\(e,2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\\ \Leftrightarrow10x-16-12x+15=12x-16+11\\ \Leftrightarrow-14x=-4\\ \Leftrightarrow x=\dfrac{2}{7}\\ f,2x\left(6x-2x^2\right)+3x^2\left(x-4\right)=8\\ \Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\\ \Leftrightarrow-x^3-8=0\\ \Leftrightarrow-\left(x^3+8\right)=0\\ \Leftrightarrow-\left(x+2\right)\left(x^2-2x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\\x\in\varnothing\left(x^2-2x+4=\left(x-1\right)^2+3>0\right)\end{matrix}\right.\)

Bài 4:

a: Ta có: \(3\left(2x-3\right)-2\left(x-2\right)=-3\)

\(\Leftrightarrow6x-9-2x+4=-3\)

\(\Leftrightarrow4x=2\)

hay \(x=\dfrac{1}{2}\)

b: Ta có: \(x\left(5-2x\right)+2x\left(x-1\right)=13\)

\(\Leftrightarrow5x-2x^2+2x^2-2x=13\)

\(\Leftrightarrow3x=13\)

hay \(x=\dfrac{13}{3}\)

c: Ta có: \(5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\)

\(\Leftrightarrow5x^2-5x-5x^2+7x-10x+14=6\)

\(\Leftrightarrow-8x=-8\)

hay x=1