Cho 4 điểm A, B, C, D phân biệt. Tìm vị trí điểm M sao cho: \(\overrightarrow{AM}=\overrightarrow{BC}-\overrightarrow{AD}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Gọi K là trung điểm của BC
ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
Xét ΔCAB có
O,K lần lượt là trung điểm của CA,CB
=>OK là đường trung bình
=>OK//AB và \(OK=\dfrac{AB}{2}\)
=>\(\overrightarrow{OK}=\dfrac{\overrightarrow{AB}}{2}\)
=>\(\overrightarrow{AB}=2\cdot\overrightarrow{OK}\)
Xét ΔOBC có OK là đường trung tuyến
nên \(\overrightarrow{OB}+\overrightarrow{OC}=2\cdot\overrightarrow{OK}\)
=>\(\overrightarrow{AB}=\overrightarrow{OB}+\overrightarrow{OC}\)
=>M trùng với B
Bài 2:
Xét ΔABC có
M,P lần lượt là trung điểm của AB,AC
=>MP là đường trung bình của ΔABC
=>MP//BC và MP=BC/2
=>MP=CN
mà MP//NC
nên MPCN là hình bình hành
=>\(\overrightarrow{MP}=\overrightarrow{NC}\)
=>\(\overrightarrow{MP}=-\overrightarrow{CN}\)
=>\(\overrightarrow{MP}+\overrightarrow{CN}=\overrightarrow{0}\)
mà \(\overrightarrow{MK}+\overrightarrow{CN}=\overrightarrow{0}\)
nên K trùng với P
Cách 1:
\(\overrightarrow {MA} + 4\overrightarrow {MB} = \overrightarrow 0 \Leftrightarrow \overrightarrow {MA} = - 4\overrightarrow {MB} \Rightarrow \frac{{MA}}{{MB}} = \frac{{\left| {\overrightarrow {MA} } \right|}}{{\left| {\overrightarrow {MB} } \right|}} = \frac{{\left| { - 4\overrightarrow {MB} } \right|}}{{\left| {\overrightarrow {MB} } \right|}} = 4\) và hai vectơ \(\overrightarrow {MA} ,\overrightarrow {MB} \) ngược hướng
Suy ra M nằm giữa AB sao cho \(\frac{{MA}}{{MB}} = 4\)
Cách 2:
\(\begin{array}{l}
\overrightarrow {MA} + 4\overrightarrow {MB} = \vec 0\\
\Leftrightarrow \overrightarrow {MB} + \overrightarrow {BA} + 4\overrightarrow {MB} = \vec 0\\
\Leftrightarrow 5\overrightarrow {MB} = \overrightarrow {AB}
\end{array}\)
Vậy A, M, B thẳng hàng, M nằm giữa A và B sao cho \(MB = \frac{1}{5}AB\)
** M là trung điểm của AB đúng không bạn?
a.
\(|\overrightarrow{AM}+\overrightarrow{AB}|=|\frac{1}{2}\overrightarrow{AB}+\overrightarrow{AB}|=\frac{3}{2}|\overrightarrow{AB}|=\frac{3}{2}.3a=\frac{9a}{2}\)
b.
\(|\overrightarrow{AB}+\overrightarrow{CD}|=|\overrightarrow{AB}+\overrightarrow{BA}|=|\overrightarrow{0}|=0\)
c.Trên $CD$ lấy $K$ sao cho $CK=a$. Khi đó:
\(|\overrightarrow{DN}+\overrightarrow{BN}|=|\overrightarrow{DN}+\overrightarrow{KD}|=|\overrightarrow{KN}|=KN=\sqrt{a^2+a^2}=\sqrt{2}a\)
a) \(\overrightarrow {OA} + 3\overrightarrow {OB} = \overrightarrow 0 \)
\(\begin{array}{l}
\overrightarrow {OA} + 3\overrightarrow {OB} = \vec 0\\
\Leftrightarrow \overrightarrow {OB} + \overrightarrow {BA} + 3\overrightarrow {OB} = \vec 0\\
\Leftrightarrow \overrightarrow {OB} + 3\overrightarrow {OB} = - \overrightarrow {BA} \\
\Leftrightarrow 4\overrightarrow {OB} = \overrightarrow {AB} \\
\Leftrightarrow \overrightarrow {OB} = \frac{1}{4}\overrightarrow {AB}
\end{array}\)
Vậy O thuộc đoạn AB sao cho \(OB = \frac{1}{4}AB\)
b) Ta có:
\(\begin{array}{l}
\overrightarrow {MA} + 3\overrightarrow {MB} = \left( {\overrightarrow {MO} + \overrightarrow {OA} } \right) + 3\left( {\overrightarrow {MO} + \overrightarrow {OB} } \right)\\
= \left( {\overrightarrow {MO} + 3\overrightarrow {MO} } \right) + \left( {\overrightarrow {OA} + 3\overrightarrow {OB} } \right)\\
= 4\overrightarrow {MO} + \overrightarrow 0 = 4\overrightarrow {MO} . (đpcm)
\end{array}\)
Gọi D là chân đường phân giác của góc A trên BC
\(\Rightarrow\dfrac{DB}{DC}=\dfrac{AC}{AC}=\dfrac{4}{5}\Rightarrow5\overrightarrow{BD}=4\overrightarrow{DC}\)
\(\Rightarrow5\overrightarrow{BD}=4\overrightarrow{DB}+4\overrightarrow{BC}\Rightarrow\overrightarrow{BD}=\dfrac{4}{9}\overrightarrow{BC}\)
\(\Rightarrow\overrightarrow{AD}=\overrightarrow{AB}+\overrightarrow{BD}=\overrightarrow{AB}+\dfrac{4}{9}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)=\dfrac{5}{9}\overrightarrow{AB}+\dfrac{4}{9}\overrightarrow{AC}\)
\(\Rightarrow M\) trùng D hay M là chân đường phân giác của góc A trên BC
Lấy điểm F sao cho \(\overrightarrow{AF}=\overrightarrow{BC}\) (hay dựng hbh \(ABCF\))
Trên tia đối tia AD lấy E sao cho AD=AE hay \(\overrightarrow{AD}=-\overrightarrow{AE}\)
Cộng 2 vecto \(\overrightarrow{AF}\) và \(\overrightarrow{AE}\) theo quy tắc hbh sẽ tìm được điểm M
\(\Rightarrow\overrightarrow{BC}-\overrightarrow{AD}=\overrightarrow{AF}+\overrightarrow{AE}=\overrightarrow{AM}\)