Một khối học sinh khi xếp hàng 2,3,4,5,6 đều thiếu 1 người , nhưng khi xếp hàng 7 thì vừa đủ. Biết số học sinh chưa tới 300.Tính số học sinh.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi số hs khối đó là a
khi đó (a+1)E bc(2,3,4,5,6) a<300
bc(2,3,4,5,6)=244
a=244+1=245
Ta có số học sinh lớp đó là x thì x+1 chia hết cho
2,3,4,5,6
Vậy Ta tìm bội của 2,3,4,5,6 là:60;120;180;240
X có thể là 60;120;180;240(chú ý bội này phải dưới 300 hs)
Và +x+1=60
x=59(0 chia hết cho 7 loại)
+ x+1=120
x=119(chia hết cho 7 được)
+x+1=180
x=179(0 chia hết cho 7 loại)
+x+1=240
x=239(0 chia hết cho 7 loại)
Vậy một khốihọc sinh có 119 hoc sinh
Gọi m là số học sinh cần tìm của khối ( m ∈ N* và m < 300)
Vì xếp hàng 2, hàng 3, hàng 4, hàng 5, hàng 6 thiếu 1 người nên:
(m+1) ⋮2; (m + 1) ⋮3; (m + 1) ⋮ 4; (m+ 1) ⋮5; (m + 1) ⋮6
Suy ra: (m + 1) ∈ BC(2; 3; 4; 5; 6) và m + 1 < 301 (vì m < 3000).
Ta có 2 = 2; 3 = 3; 4 = 22; 5 = 5 và 6 = 2.3
BCNN(2; 3; 4; 5; 6) = 22.3.5 = 60
BC(2; 3; 4; 5; 6) = {0; 60; 120; 180; 240; 300; ...}
Vì m + 1 < 301 nên m + 1 ∈ {60; 120; 180; 240; 300}
Suy ra m ∈ {59; 119; 179; 239; 299} (1)
* Do khi xếp hàng 7 thì vừa đủ nên m ⋮ 7 (2)
Từ (1) và (2) suy ra: m = 119
Vậy khối có 119 học sinh
Gọi số học sinh phải tìm là a ( 0<a<300 ) và a chia hết cho 7.
Khi xếp hàng 2, hàng 3, hàng 4, hàng 5, hàng 6 đều thiếu 1 người nên a+1 chia hết cho cả 2,3,4,5,6.
a+1 ∈ BC (2,3,4,5,6)
BCNN(2,3,4,5,6) = 60
BC(2,3,4,5,6) = {0;60;120;180;240;300;360;...}
a+1 ∈ {0;60;120;180;240;300;360;...}
Vì 0<a<300 1<a+1<301 và a chia hết 7.
nên a+1 = 120 a = 119
Vậy số học sinh là 119 h/s
tick ủng hộ cái nha
Gọi số học sinh là a , ta có:
a chia 2;3;4;5 dư 1;2;3;4 ( thiếu 1)
Nên a + 1 chia hết cho 2;3;4;5
2 = 2 ; 3 = 3 ; 4 = 22 ; 5 = 5
=> BCNN(2,3,4,5) = 22.3.5 = 60
Vậy a thuộc {59 ; 119 ; 179 ; 239 ; 299 ; 359 ; ....}
MÀ a chia hết cho 7 ; trong số các số trên a nhỏ nhất chia hết cho 7 là 119
Vậy a = 119
Gọi số hs của trường đó là a ( a\(\in\)N*, a<300 và a\(⋮\)7)
Do a : 2,3,4,5,6 dư 1\(\Rightarrow\)a+1 \(\in\)BC(2,3,4,5,6)
\(\Rightarrow\)a+1 \(⋮\)BCNN(2,3,4,5,6,)
Ta có: 2 = 2.1
3 = 3 .1
4 = 22
5 = 5.1
6 = 3 .2
\(\Rightarrow\)BCNN(2,3,4,5,6)=22.3.5=60
\(\Rightarrow\)BC(2,3,4,5,6)=B(60)={0;60;120;180;...}
Vì a\(\le\)300 và a + 1\(⋮\)7
\(\Rightarrow\)a + 1 \(=\)120
\(\Rightarrow\)a =120 - 1
\(\Rightarrow\)a = 119
Vậy a = 119