K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2018

Ta có: x = 2011 \(\Rightarrow\) 2010 = x - 1

\(A=x^{2011}-2010x^{2010}-2010x^{2009}-...-2010x+1\)

\(=x^{2011}-\left(x-1\right)x^{2010}-\left(x-1\right)x^{2009}-...-\left(x-1\right)x+1\)

\(=x^{2011}-\left(x-1\right)x^{2010}-\left(x-1\right)x^{2009}-...-\left(x-1\right)x+1\)

\(=x^{2011}-x^{2011}+x^{2010}-x^{2010}+x^{2009}-...-x^2+x+1\)

\(=x+1\)

\(=2011+1\)

\(=2012.\)

4 tháng 1 2018

x=2011

=> 2010= x-1

A = x^2011- (x-1) x^2010- (x-1).x^2009-.....- (x-1).x+1

= x^2011-x^2011+x^2010- x^2010+x^2009..x^2.-x^2+x+1

= x+1

=(x-1)+2= 2010+2=2012

18 tháng 3 2020

x.x^4 nha

18 tháng 3 2020

-Ta thấy \(x^4+x^2+1=x^4-x+x^2+x+1=\left(x^2-x\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)=\left(x^2-x+1\right)\left(x^2+x+1\right)\)

Vậy PT sẽ thành

\(\frac{2010x\left(x^3+1\right)}{x\left(x^4+x^2+1\right)}+\frac{2010x\left(x^3-1\right)}{x\left(x^4+x^2+1\right)}=\frac{2011}{x\left(x^4+x^2+1\right)}\)

\(\Leftrightarrow2.2010x^4=2011\Leftrightarrow x=...\)

Đặt \(A=2^{2011}+2^{2010}+...+2+1\)

\(\Leftrightarrow2A=2^{2012}+2^{2011}+...+2^2+2\)

\(\Leftrightarrow A=2^{2012}-1\)

\(x=2^{2012}-A=2^{2012}-2^{2012}+1=1\)

=>2010x=2010

10 tháng 12 2018

gấp nha mấy bạn giups mình

Bài làm

Hàm số: y=f(x)=| x2 - 2010x - 2011 |

* Với f(1) =  | 12 - 2010 x 1 - 2011 |

               = |  1  - 2010   - 2011 |

               = | -4020 |

               = 4020

Vậy với f(1) thì = 420

* Với f(-2010) = | ( -2010 )2 - 2010 x ( -2010 ) - 2011 |

                      = | -4040100 - ( -4040100 ) - 2011 |

                      = |            0                          - 2011 |

                      =   - 2011

Vậy với f(-2010) thì bằng -2011

# Chúc bạn học tốt #.

8 tháng 12 2016

ĐS: 2011x+1

Đúng ko ? :p

8 tháng 1 2019

a) \(S=1+2+2^2+...+2^{100}\)

\(2S=2+2^2+2^3+...+2^{101}\)

\(2S-S=\left(2+2^2+...+2^{101}\right)-\left(1+2+...+2^{100}\right)\)

\(S=2^{101}-1\)

b) \(X=2^{2012}-2^{2011}-...-2-1\)

\(X=2^{2012}-\left(1+2+...+2^{2011}\right)\)

Đặt \(X=2^{2012}-Y\)

Ta có :

\(Y=1+2+...+2^{2011}\)

\(2Y=2+2^2+...+2^{2012}\)

\(2Y-Y=\left(2+2^2+...+2^{2012}\right)-\left(1+2+...+2^{2011}\right)\)

\(Y=2^{2012}-1\)

\(\Rightarrow X=2^{2012}-2^{2012}+1\)

\(\Rightarrow X=1\)

\(\Rightarrow2010X=2010\)