Gọi M là trung điểm cạnh BC của tam giác ABC. kẻ BH vuông góc AMvà CK vuông góc AM . Chứng minh
a, BH//CK
b, M là trung điểm của HK
c, HC//BK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét 2 tam giác vuông t/giác BHM và t/giác CKM, có
BM = MC ( M là t/điểm của BC)
góc cmk = góc bmh ( đối đỉnh)
=> t/giác BHM = t/giác CKM ( cạnh huyền góc nhọn )
=> góc H = góc K mà chúng ở vị trí slt => BH // KC
=> BH = CK ( 2 cạnh tuowg ứng)
b) tương tự câu a
a) Xét t/g CKM vuông tại K và t/g BHM vuông tại H có:
CM = BM (gt)
CMK = BMH ( đối đỉnh)
Do đó, t/g CKM = t/g BHM ( cạnh huyền - góc nhọn)
=> KM = HM (2 cạnh tương ứng)
=> M là trung điểm HK (đpcm)
b) Xét t/g CMH và t/g BMK có:
HM = KM (câu a)
CMH = BMK ( đối đỉnh)
CM = BM (gt)
Do đó, t/g CMH = t/g BMK (c.g.c)
=> CHM = BKM (2 góc tương ứng)
Mà CHM và BKM là 2 góc ở vị trí so le trong nên HC // BK (đpcm)
b: Ta có: ΔABC cân tại A
mà AE là đường trung tuyến
nên AE là đường cao
a) Ta có : ^BAK+^KAC=90 độ (1)
^HBA+^BAH ( hay ^BAK)=90 độ (2)
Từ (1) và (2)=> ^KAC=^HBA ( vì đều bằng 90 độ - ^BAK )
Xét 🔺BHA và 🔺AKC có :
^BHA = ^AKC = 90 độ
AB=AC ( vì 🔺ABC vuông cân ở A )
^KAC = ^HBA ( chứng minh trên )
Suy ra 🔺BHA = 🔺AKC ( cạnh huyền - góc nhọn )
=> BH = AK ( 2 góc tương ứng )
b, ΔMBH = ΔMAK:
Ta có: BH ⊥ AK; CK ⊥ AE.
=> BH // CK.
=> HBMˆ=MCKˆHBM^=MCK^ (2 góc so le trong) [1]
Mà MAEˆ+AEMˆ=90oMAE^+AEM^=90o [2]
Và MCKˆ+CEKˆ=90oMCK^+CEK^=90o [3]
AEMˆ=CEKˆAEM^=CEK^ (đối đỉnh) [4]
Từ [1], [2], [3] và [4] => MAEˆ=ECKˆMAE^=ECK^ [5]
Từ [1] và [5] => HBMˆ=MAKˆHBM^=MAK^.
Ta có: AM là trung tuyến của tam giác vuông ABC nên AM = BM = MC = 1212BC.
Xét ΔMBH và ΔMAK có:
+ MA = MB (cmt)
+ HBMˆ=MAKˆHBM^=MAK^ (cmt)
+ BH = AK (câu a)
=> ΔMBH = ΔMAK (c - g - c)
c, ΔMHK vuông cân:
Xét ΔAMH và ΔCMK có:
+ AH = CK (ΔABH = ΔCAK)
+ MH = MK (ΔMBH = ΔMAK)
+ AM = CM (AM là trung tuyến)
=> ΔAMH = ΔCMK (c - c - c)
=> AMHˆ=CMKˆAMH^=CMK^ (2 góc tương ứng)
mà AMHˆ+HMCˆ=90oAMH^+HMC^=90o
=> CMKˆ+HMCˆ=90oCMK^+HMC^=90o
hay HMKˆ=90oHMK^=90o.
ΔHMK có MK = MH và MHKˆ=90oMHK^=90o.
=> ΔHMK vuông cân tại M.