Cho tam giác ABC cân tại A ( góc A<90). Các đường cao BE và CD cắt nhau tại H.Chứng minh rằng:
a) Tam giác ADC=tam giác AEB
b)góc DAH= góc EAH
c)BDEC là hình thang cân.
Xin cảm ơn!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
b: ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông góc với BC
d: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
góc HAM=góc KAM
Do đó: ΔAHM=ΔAKM
=>AH=AK
1)
Ta có tam giác ABC cân tại A => góc B = góc C = (180 - 50) : 2 = 65 độ
2)
Ta có: tam giác ABC cân tại A => góc B = góc C = (180 - góc A) : 2
mà góc B = A + 300
=> (1800 - góc A) : 2 = Â + 300
=> \(\frac{180}{2}-\frac{Â}{2}=Â+30^0\)
=> 900 - Â/2 = Â + 300
=> 900- 300 = Â + Â/2
=> \(60^0=\frac{3Â}{2}\Rightarrow3Â=60\cdot2=120\RightarrowÂ=\frac{120}{3}=40^0\)
=> góc B = góc C = (180 - Â) : 2 = (180 - 40) : 2 = 70 độ
Sửa đề: Tam giác ABC cân tại A, góc A bằng 100 độ. BC=8cm, AC=10cm. Phía ngoài tam giác ABC vẽ tam giác ABD cân tại D, góc ADB bằng 140 độ. Tính chu vi tam giác ABD.
Kẻ AH \(\perp\) BC.
Xét tam giác ABC cân tại A có: AH là đường cao (AH \(\perp\) BC).
=> AH là trung tuyến (Tính chất các đường trong tam giác cân).
=> H là trung điểm của BC. => BH = \(\dfrac{1}{2}\) BC. => BH = \(\dfrac{1}{2}\)a.
Tam giác ABC cân tại A (gt). => ^ABC = (180o - 108o) : 2 = 36o.
Mà ^BAD = 36o (gt).
=> ^ABC = ^BAD = 36o.
Mà 2 góc này ở vị trí so le trong.
=> AD // BC (dhnb).
Mà AH \(\perp\) BC (cách vẽ).
=> AH \(\perp\) AD. => ^DAH = 90o. => ^MAH = 90o.
Kẻ MH // DB; M \(\in\) AD.
Xét tứ giác DMHB có:
+ MH // DB (cách vẽ).
+ MD // HB (do AD // BC).
=> Tứ giác DMHB là hình bình hành (dhnb).
=> MH = DB và MD = BH (Tính chất hình bình hành).
Ta có: AD = MD + AM.
Mà AD = b (do AD = AC = b); MD = \(\dfrac{1}{2}\)a (do MD = BH = \(\dfrac{1}{2}\)a).
=> AM = b - \(\dfrac{1}{2}\)a.
Xét tam giác AHB vuông tại H có:
AB2 = AH2 + BH2 (Định lý Py ta go).
Thay: b2 = AH2 + ( \(\dfrac{1}{2}\)a)2.
<=> AH2 = b2 - \(\dfrac{1}{4}\)a2.
<=> AH = \(\sqrt{b^2-\dfrac{1}{2}a^2}\).
Xét tam giác MAH vuông tại A (^MAH = 90o) có:
\(MH^2=AM^2+AH^2\) (Định lý Py ta go).
Thay: MH2 = (b - \(\dfrac{1}{2}\)a)2 + (\(\sqrt{b^2-\dfrac{1}{2}a^2}\))2.
MH2 = b2 - ab + \(\dfrac{1}{4}\)a2 + b2 - \(\dfrac{1}{4}\)a2.
MH2 = 2b2 - ab.
MH = \(\sqrt{2b^2-ab}\).
Mà MH = BD (cmt).
=> BD = \(\sqrt{2b^2-ab}\).
Chu vi tam giác ABD: BD + AD + AB = \(\sqrt{2b^2-ab}\) + b + b = \(\sqrt{2b^2-ab}\) + 2b.
(ko chắc ở câu c)
a) Xét \(\Delta\)ADC và \(\Delta\) AEB có:
^ADC = ^AEB = 90o
^A chung. (chỗ này ko chắc:v)
AB = AC (\(\Delta\) ABC cân tại A)
Do đó \(\Delta\)ADC = \(\Delta\)AEB (cạnh huyền - góc nhọn)
b) Cách 1: Chứng minh tam giác ADH = tam giác AEH như hồi lớp 7 đã học (cách này chắc ăn nhất)
Cách 2: (ko chắc lắm)
Theo đề bài H là giao điểm 2 đường cao từ đó \(AH\perp BC\). Mặt khác:
Trong tam giác cân, đường cao xuất phát từ đỉnh đồng thời là đường phân giác nên AH là đường phân giác ^A.
Hay ^BAH = ^CAH hay ^DAH = ^EAH (Vì D và E lần lượt thuộc AB và AC)
c) Từ câu a) có ngay AD = AE \(\rightarrow\Delta\)ADE cân tại A. Do đó ^ADE = \(\frac{180^o-\widehat{DAE}}{2}=\frac{180^o-\widehat{BAC}}{2}\)(1)
Mặt khác, do \(\Delta\)ABC cân tại A nên \(\widehat{ABC}=\frac{180^o-\widehat{BAC}}{2}\) (2)
Từ (1) và (2) ta có ^ADE = ^ABC. Mà 2 góc này ở vị trí đồng vị nên DE // BC (3)
Do \(\Delta\)ABC cân tại A nên ^B = ^C (4)
Từ (3) và (4) ta có BDEC là hình thang cân (đpcm)