Hai đoạn thằng AC và BD cắt nhau ở trung điểm O của mỗi đoan thẳng. Chứng minh: a) AD = BC, AB = DC
b) góc CDA = góc CBA, góc BAD = góc BCD.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác AOD và tam giác COB có:
OA=OC(O là trung điểm AC)
^AOD=^BOC(hai góc đối đỉnh)
OD=OB(O là trung điểm BD)
=>tam giác AOD=tam giác COB(c.g.c)
=>AD=BC(hai cạnh tương ứng )
Xét tam giác AOB và tam giác COD có:
OB=OD(O là trung điểm BD)
^AOB=^DOC(hai góc đối đỉnh)
OA=OC(O là trung điểm AC)
=> tam giác AOD=tam giác COD(c.g.c)
=>AB=DC(hai cạnh tương ứng)
Cm: a) Xét t/giác OAD và t/giác OCB
có: OA = OC (gt)
\(\widehat{AOD}=\widehat{COB}\) (đối đỉnh)
OD = OB (gt)
=> t/giác OAD = t/giác OCD (c.g.c)
=> AD = BC (2 cạnh t/ứng)
Tương tự, xét t/giác AOB và t/giác COD
có: OA = OC (gt)
\(\widehat{AOB}=\widehat{COD}\) (Đối đỉnh)
OB = OD (gt)
=> t/giác AOB = t/giác COD (c.g.c)
=> AB = DC (2 cạnh t/ứng)
b) Xét t/giác ADC và t/giác CAB
có: AC : chung
AD = BC (cmt)
AB = DC (cmt)
=> t/giác ADC = t/giác CAB (c.c.c)
=> \(\widehat{CDA}=\widehat{CBA}\)(2 góc t/ứng)
Xét t/giác ADB và t/giác CBD
có: AB = CD (cmt)
AD = CB (cmt)
BD : chung
=> t/giác ADB = t/giác CBD (c.c.c)
=> \(\widehat{BAD}=\widehat{BCD}\)(2 góc t/ứng)
a: Xét ΔOAD và ΔOCB có
OA=OC
\(\widehat{AOD}=\widehat{COB}\)
OD=OB
Do đó: ΔOAD=ΔOCB
=>AD=CB và \(\widehat{OAD}=\widehat{OCB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AD//BC
b: Xét ΔOAB và ΔOCD có
OA=OC
\(\widehat{AOB}=\widehat{COD}\)
OB=OD
Do đó: ΔOAB=ΔOCD
=>AB=CD
Xét ΔABC và ΔCDA có
AB=CD
BC=DA
AC chung
Do đó: ΔABC=ΔCDA
=>\(\widehat{ABC}=\widehat{CDA}\)
c: Xét ΔOBN và ΔODM có
OB=OD
\(\widehat{OBN}=\widehat{ODM}\)
BN=DM
Do đó: ΔOBN=ΔODM
=>\(\widehat{BON}=\widehat{DOM}\)
mà \(\widehat{DOM}+\widehat{BOM}=180^0\)
nên \(\widehat{BON}+\widehat{BOM}=180^0\)
=>\(\widehat{MON}=90^0\)
=>M,O,N thẳng hàng
d: Xét ΔOAE và ΔOCF có
OA=OC
\(\widehat{AOE}=\widehat{COF}\)
AE=CF\(\left(AE=\dfrac{AD}{2}=\dfrac{BC}{2}=CF\right)\)
Do đó: ΔOAE=ΔOCF
=>\(\widehat{AOE}=\widehat{COF}\)
mà \(\widehat{AOE}+\widehat{EOC}=180^0\)
nên \(\widehat{COF}+\widehat{COE}=180^0\)
=>\(\widehat{FOE}=180^0\)
=>F,O,E thẳng hàng
mà OE=OF
nên O là trung điểm của EF
a: Xét tứ giác ACBD có
O là trung điểm của AB
O là trung điểm của CD
Do đó: ACBD là hình bình hành
Suy ra: AD//BC; AC//BD
a: Xét tứ giác ACBD có
O là trung điểm của AB
O là trung điểm của CD
Do đó: ACBD là hình bình hành
Suy ra: AC//BD; AD//BC