tim cac chu so tan cung
421
953
3103
84n+1(n thuộc N)
1423+2323+7023
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
khó giải thích nhỉ kiểu C/M (1+1=2) này hơi mỏi
với n chẵn ta có 5^n=5^2k=25^k luôn có 2 số tận cùng với k>=1 là 25
với n lẻ ta có 5^n=5.^(2k+1)=5.5^(2k) =5.(25)^k {5.25 tận cùng 25
=> 5^n luôn có tận cùng là 25 với n>1
Bài giải
\(a,\text{ }4^{21}=4^{20}\cdot4=\left(4^2\right)^{10}\cdot4=\overline{\left(...6\right)}^{10}\cdot4=\overline{\left(...6\right)}\cdot4=\overline{\left(...4\right)}\)
Vậy chữ số tận cùng của \(4^{21}\) là 4
\(b,\text{ }9^{53}=9^{52}\cdot9=\left(9^2\right)^{26}\cdot9=\overline{\left(...1\right)}^{26}\cdot9=\overline{\left(...1\right)}\cdot9=\overline{\left(...9\right)}\)
Vậy chữ số tận cùng của \(9^{53}\) là 9
\(c,\text{ }3^{103}=3^{102}\cdot3=\left(3^4\right)^{34}\cdot3=\overline{\left(...1\right)}^{34}\cdot3=\overline{\left(...1\right)}\cdot3=\overline{\left(...3\right)}\)
Vậy chữ số tận cùng của \(3^{103}\) là 3
Bài giải
\(a,\text{ }4^{21}=4^{20}\cdot4=\left(4^2\right)^{10}\cdot4=\overline{\left(...6\right)}^{10}\cdot4=\overline{\left(...6\right)}\cdot4=\overline{\left(...4\right)}\)
Vậy chữ số tận cùng của \(4^{21}\) là 4
\(b,\text{ }9^{53}=9^{52}\cdot9=\left(9^2\right)^{26}\cdot9=\overline{\left(...1\right)}^{26}\cdot9=\overline{\left(...1\right)}\cdot9=\overline{\left(...9\right)}\)
Vậy chữ số tận cùng của \(9^{53}\) là 9
\(c,\text{ }3^{103}=3^{102}\cdot3=\left(3^4\right)^{34}\cdot3=\overline{\left(...1\right)}^{34}\cdot3=\overline{\left(...1\right)}\cdot3=\overline{\left(...3\right)}\)
Vậy chữ số tận cùng của \(3^{103}\) là 3
\(d,\text{ }8^{4n+1}=8^{4n}\cdot8=\left(8^4\right)^n\cdot8=\overline{\left(...6\right)}^n\cdot8=\overline{\left(...6\right)}\cdot8=\overline{\left(...8\right)}\)
Vậy chữ số tận cùng của \(8^{4n+1}\) là 8
\(e,\text{ }14^{23}+23^{23}+70^{23}=14^{22}\cdot14+23^{20}\cdot23^3+70^{23}=\left(14^2\right)^{11}\cdot14+\left(23^4\right)^5\cdot23^3+70^{23}\)
\(=\overline{\left(...6\right)}^{11}\cdot14+\overline{\left(...1\right)}^5\cdot\overline{\left(...3\right)}^3+\overline{\left(...0\right)}^{23}\)
\(=\overline{\left(...6\right)}\cdot14+\overline{\left(...1\right)}\cdot\overline{\left(...9\right)}+\overline{\left(...0\right)}\)
\(=\overline{\left(...4\right)}+\overline{\left(...9\right)}+\overline{\left(...0\right)}\)
\(=\overline{\left(...3\right)}\)
Vậy chữ số tận cùng của tổng trên là 3