so sánh :3100 và 2151
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(2^{200}.2^{100}=\left(2^2\right)^{100}.2^{100}=4^{100}.2^{100}=\left(4.2\right)^{100}=8^{100}\)
\(3^{100}.3^{100}=\left(3.3\right)^{100}=9^{100}\)
Vì \(8< 9\) nên \(8^{100}< 9^{100}\)
Vậy \(2^{200}.2^{100}< 3^{100}.3^{100}\)
\(#WendyDang\)
a: \(A=2019\cdot2021=2020^2-1\)
\(B=2020^2\)
Do đó: A<B
Dịch ra là: Ta có: 3A = 3. (1 + 3 + 32 + 33 + ... + 399 + 3100) (1 + 3 + 32 + 33 + ... + 399 + 3100) 3A = 3 + 32 + 33 + ... + 3100 + 31013 + 32 + 33 + ... + 3100 + 3101 Suy ra: 3A - A = (3 + 32 + 33 + ... + 3100 + 3101) - (1 + 3 + 32 + 33 + ... + 399 + 3100) (3 + 32 + 33 + ... + 3100 + 3101) - (1 + 3 + 32 + 33 + ... + 399 + 3100) ⇒⇒ A = 3101−123101−12 Vậy A = 3101−12
Mà đoạn 2A sai nhé bạn, sửa lại:
2A = 3101−13101−1 2A=-10001
A=-10001/2
A=-5000,5
Vậy A=-5000,5
Bài 1:
a. $2^{29}< 5^{29}< 5^{39}$
$\Rightarrow A< B$
b.
$B=(3^1+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^{2009}+3^{2010})$
$=3(1+3)+3^3(1+3)+3^5(1+3)+...+3^{2009}(1+3)$
$=(1+3)(3+3^3+3^5+...+3^{2009})$
$=4(3+3^3+3^5+...+3^{2009})\vdots 4$
Mặt khác:
$B=(3+3^2+3^3)+(3^4+3^5+3^6)+....+(3^{2008}+3^{2009}+3^{2010})$
$=3(1+3+3^2)+3^4(1+3+3^2)+...+3^{2008}(1+3+3^2)$
$=(1+3+3^2)(3+3^4+....+3^{2008})=13(3+3^4+...+3^{2008})\vdots 13$
Bài 1:
c.
$A=1-3+3^2-3^3+3^4-...+3^{98}-3^{99}+3^{100}$
$3A=3-3^2+3^3-3^4+3^5-...+3^{99}-3^{100}+3^{101}$
$\Rightarrow A+3A=3^{101}+1$
$\Rightarrow 4A=3^{101}+1$
$\Rightarrow A=\frac{3^{101}+1}{4}$
2.So sánh 23100 va 32100
\(2^{3100}=\left(2^{31}\right)^{100}\)
\(3^{2100}=\left(3^{21}\right)^{100}\)
Vậy \(63^{100}=63^{100}\)
k nha
23100 < 32100
ủng hộ nha! 56767657585643634665756756834534645
2m3dm = 230cm
CHu vi miếng bìa là
230 : 1/2 = 460(cm)
Chiều dài miếng bài là
460 : 2 - 9 = 221 (cm)
Diện tích miếng bìa là
221 x 9 = 1989 (cm2)
Ta có: 3A = 3.(1+3+32+33+...+399+3100)
3A = 3+32+33+...+3100+3101
Suy ra: 3A – A = (3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)
2A = 3101−1
⇒ A = 3101−1
2
Vậy A = 3101−1
2