a) Tìm x, y biết: \(3xy^2+2x+2y+1=x^2+6y^2+xy\)
b) chứng minh rằng \(B=42^n+2.19^n+3.4^n\) chia hết cho 23 với n là số nguyên lẻ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: 3xy - 5 = x2 + 2y
=> 3xy - x2 - 2y = 5
=> y.( 3x - 2 ) = 5 + x.x
=> y = \(\frac{5+x^2}{3x-2}\)
=> \(x^2+5⋮3x-2\)( vì y là số nguyên )
=> \(3x^2+15⋮3x-2\)
\(\Rightarrow x\left(3x-2\right)+15+2x⋮3x-2\)
\(\Rightarrow2x+15⋮3x+2\)
\(\Rightarrow6x+45⋮3x+2\)
\(\Rightarrow2.\left(3x+2\right)+41⋮3x+2\)
\(\Rightarrow41⋮3x+2\)
\(\Rightarrow3x+2\in\left\{-41;-1;1;41\right\}\)
\(\Rightarrow3x\in\left\{-43;-3;-1;39\right\}\)
VÌ 3x chia hết cho 3
\(\Rightarrow3x\in\left\{-3;39\right\}\)
\(\Rightarrow x\in\left\{-1;13\right\}\)
+) với x = -1 => y = -6/5 ( loại )
+) với x = 13 => y = 174/37 ( loại )
Vậy không tìm được ( x ; y ) thỏa mãn bài
b,
Xét \(3^{n+2}-2^{n+2}+3^n-2^n=3^n.9-2^n.4+3^n-2^n=3^n.\left(9+1\right)-2^n.\left(4+1\right)=3^n.10-2^n.5\)
\(=3^n.10-2^{n-1}.2.5=3^n.10-2^{n-1}.10=10.\left(3^n-2^{n-1}\right)⋮10\)
\(\Rightarrow3^{n+2}-2^{n+2}+3^n-2^n⋮10\)
Vậy: \(3^{n+2}-2^{n+2}+3^n-2^n⋮10\)
a.Vì x,y là số nguyên dương
=> 1003 và 2y cũng là số nguyên dương
Vì 2008 là số chẵn
mà 2y cũng là số chẵn
=> 1003x là số chẵn
Vì 1003 là số lẻ
mà 1003x là số chẵn
=> x là số chẵn
=> x chia hết cho 2 (đpcm)
Vậy ta có đpcm
Em nghĩ đề câu b là: n là số nguyên dương lẻ ạ!
Nếu đúng như vậy thì cách của em như sau:(ko chắc nha)
b) Với n = 1 thì mệnh đề đúng!
Giả sử nó đúng đến n = 2k + 1(do n lẻ mà) tức là:
\(42^{2k+1}+2.19^{2k+1}+3.4^{2k+1}⋮23\) (giả thiết quy nạp)
Ta sẽ chứng minh nó đúng với n = 2k + 3.
Cần chứng minh \(42^{2k+1}.42^2+2.19^{2k+1}.19^2+3.4^{2k+1}.4^2⋮23\)(*)
\(\Leftrightarrow42^2\left(42^{2k+1}+2.19^{2k+1}+3.4^{2k+1}\right)+2.19^{2k+1}\left(19^2-42^2\right)+3.4^{2k+1}\left(4^2-42^2\right)⋮23\)
Theo giả thiết quy nạp, ta chỉ cần chứng minh:
\(2.19^{2k+1}\left(19^2-42^2\right)+3.4^{2k+1}\left(4^2-42^2\right)⋮23\) (1)
Mà: \(a^2-b^2=\left(a-b\right)\left(a+b\right)⋮a-b\) (Đk: a khác b)
Do đó \(\left\{{}\begin{matrix}2.19^{2k+1}\left(19^2-42^2\right)⋮-23.2.19^{2k+1}⋮23\\3.4^{2k+1}\left(4^2-42^2\right)⋮23\end{matrix}\right.\)
Từ đó suy ra (1) đúng -> (*) đúng.
Theo nguyên lí quy nạp, ta có đpcm.