Cho tứ giác ABCD có AC là đường phân giác ^BAD và CD=CB. Chứng minh rằng ^ABC= ^ADC hoặc ^ABC=180ºC− ^ADC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lấy \(E\in AB\)sao cho \(AE=AD\).
Xét hai tam giác \(AEC\)và \(ADC\)có:
\(AC\)cạnh chung
\(\widehat{EAC}=\widehat{DAC}\)vì \(AC\)là phân giác \(\widehat{BAD}\)
\(AE=AD\)cách chọn
Suy ra \(\Delta AEC=\Delta ADC\left(c.g.c\right)\)
\(\Rightarrow EC=DC=BC\)
suy ra \(\Delta CBE\)cân tại \(E\)nên \(\widehat{CBE}=\widehat{CEB}\).
mà \(\widehat{CEA}=\widehat{CDA}\)do \(\Delta AEC=\Delta ADC\).
suy ra \(\widehat{CBE}+\widehat{ADC}=\widehat{CEB}+\widehat{CEA}=180^o\)
suy ra đpcm.
Xét ΔABD và ΔCBD có
góc ABD=góc CBD
BD chung
góc ADB=góc CDB
=>ΔABD=ΔCBD
=>AB=CB và DA=DC
=>BD là trung trực của AC
ta có tam giác BCD cân tại C
=>góc CDB bằng góc CBD
=>BC//AD(goc ADB = gocCBD)
=>DPCM ABCD là hình thang
Học tốt
\(DB\)là phân giác \(\widehat{ADC}\)suy ra \(\widehat{ADB}=\widehat{CDB}\)(1)
\(BC=CD\)suy ra \(\Delta CBD\)cân tại \(C\)suy ra \(\widehat{CBD}=\widehat{CDB}\)(2)
(1)(2) suy ra \(\widehat{ADB}=\widehat{CBD}\)
mà hai góc này ở vị trí so le trong suy ra \(BC//AD\).
Suy ra \(ABCD\)là hình thang.
Chứng minh tương tự, ta có tam giác AKD là tam giác cân tại K có KI là đường trung tuyến nên đồng thời là đường cao.
⇒ IK ⊥ AD (2)
Từ (1) và (2) suy ra; IK là đường vuông góc chung của hai đường thẳng AD và BC.