cho 4 số a;b;c và số 0 (abc khác 0)với cùng cả 4 chữ số có thể lập bao nhiêu số có 4 chữ số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra ta có \(\frac{12+15+15+a}{4}=a\)
=> 4a=42+a
3a=42
a=14
a.Ta có a /4 dư 2 là 6
b/4 dư 1 là 5
Vậy a*b=6*5=30 chia 4 dư 2
b.Giã sử đặt a là 1 ta co a^2 =1, 1/4=0 dư 1 thế các số lẻ khác thì kết quả luôn luôn dư 1
c.cá số chẳn khi bình phương đều chia hết chõ vì thế các số lẻ bình phương mới không chia hết cho 4 vì thế các số dư luôn luôn 1
a) Vì a chia 4 dư 2 nên a = 4k + 2
b chia 4 dư 1 nên b = 4t + 1
a.b = ( 4k + 2 )( 4t + 1 ) = 16kt + 4k + 8t + 2 chia 4 dư 2
Vậy ab chia 4 dư 2
b) Vì a là số lẻ nên a = 2k + 1
a² = ( 2k + 1)( 2k + 1 ) = 4k² + 4k + 1 chia 4 dư 1
Vậy a² chia 4 dư 1
c) Vì a² là số chính phương ( a là số tự nhiên )
suy ra a² chia 4 dư 0 hoặc 1
Có \(36=4\times9\), \(A\) chia cho \(4\) dư \(2\) nên \(A\) chia cho \(36\) được số dư là một số chia cho \(4\) dư \(2\). Do đó số dư của \(A\) khi chia cho \(36\) có thể là: \(2,6,10,14,18,22,26,30,34\).
Tương tự \(A\) chia cho \(9\) có dư \(4\) nên số dư của \(A\) chia cho \(36\) là một số chia cho \(9\) dư \(4\) nên có thể là: \(4,13,22,31\).
Suy ra số dư của \(A\) cho \(36\) là \(22\).
A = 4+4^2+4^3+...+4^39+4^40
4A= 4^2+4^3+...+4^39+4^40+4^41
4A-A=4^41-4
A=\(\frac{\text{4^41-4}}{3}\)
( 12 + 15 + 21 + a ) : 4 = a
( 48 + a ) : 4 = a
(48 + a) : 4=a
48 = 3 * a
a = 48 : 3
=> 16
Vì a chia cho 4 dư 2 nên đặt \(a=4k+2\left(k\inℕ\right)\)
\(\Rightarrow a^2=\left(4k+2\right)^2=16k^2+16k+4=4\left(4k^2+4k+1\right)⋮4\)
Vậy a2 chia cho 4 dư 0.
Các số a, b, c có thể là : 1, 2, 3, 4, 5, 6,7 ,8 , 9
Chọn số a: 9 cách chọn
Chọn số b: 9 cách chọn ( vì ko yêu cầu khác nhau)
Chọn số c: 9 cách chọn
Chọn số 0: 1 cách
Số chữ số được lập là:
9 x 9 x 9 x 1 = 729 ( số )