K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2019

Xét n=1 thì K=2\(\Rightarrow2K-1=3,2K+1=5\)

Xét n>1 thì K chia hết cho 3,từ đây dễ dàng suy ra 2K-1 chia 3 dư 2 à do đó 2K-1 không là số chính phương

Mặt khác thì 2K+1 lẻ nên nếu 2K+1 là số chính phương thì 2K+1 chia 8 dư 1(1)

Mà với n>1 thì K có dạng 2.2.M=4M,trong đó M là tích các số nguyên tố liền sau 2

Ta thấy M lẻ nên đặt M=2t+1 suy ra 2K+1=4.(2t+1)+1=8t+5,mâu thuẫn với (1)

Vậy 2K-1 và 2K+1 không là số chính phương

16 tháng 4 2018

ad ơi júp em với vv

Tham khao:

Vì p là tích của n số nguyên tố đầu tiên nên p chia hết cho 2 và p không chia hết cho 4 (*)

Ta chứng minh p+1 là số chính phương:
Giả sử phản chứng p+1 là số chính phương . Đặt p+1 = m² (m∈N)
Vì p chẵn nên p+1 lẻ => m² lẻ => m lẻ.
Đặt m = 2k+1 (k∈N). Ta có m² = 4k² + 4k + 1 => p+1 = 4k² + 4k + 1 => p = 4k² + 4k = 4k(k+1) chia hết cho 4. Mâu thuẫn với (*)
Vậy giả sử phản chứng là sai, tức là p+1 là số chính phương

Ta chứng minh p-1 là số chính phương:
Ta có: p = 2.3.5… là số chia hết cho 3 => p-1 có dạng 3k+2.
Vì không có số chính phương nào có dạng 3k+2 nên p-1 không là số chính phương .

Vậy nếu p là tích n số nguyên tố đầu tiên thì p-1 và p+1 không là số chính phương (đpcm)

20 tháng 2 2019

Làm j mak dài vậy mem.Tôi có cách khác:))

Nhận xét:Một số chính phương khi chia cho 4 thì có các số dư là 0 hoặc 1.

Từ giả thiết suy ra M chia hết cho 2 và 3 nhưng không chia hết cho 4

Như vậy vì M chia hết cho 3 nên M-1 chia 3 dư 2 suy ra M-1 không là số chính phương.

16 tháng 4 2019

Ta có: p1, p2, p3,...pn  là n số nguyên tố đầu tiên 

=> p1.p2.p3....pn chia hết cho 3  và không chia hết cho 9

Đặt p1.p2...pn =3k, k không chia hết cho 3

=> M=2016+p1.p2.p3...pn=9.224+3k=3(3.224+k)

Giả sử M là số chính phương khi đó M chia hết cho 9

=> 3.224+k chia hết cho 3 => k chia hết cho 3 ( vô lí vì k ko chia hết cho 3)

Vậy M ko là số chính phương

19 tháng 9 2017

3k+1

3k+2

Vì p là tích của n số nguyên tố đầu tiên nên p chia hết cho 2 và p không chia hết cho 4 ﴾*﴿ Ta chứng minh p+1 là số chính phương: Giả sử phản chứng p+1 là số chính phương . Đặt p+1 = m² ﴾m∈N﴿ Vì p chẵn nên p+1 lẻ => m² lẻ => m lẻ. Đặt m = 2k+1 ﴾k∈N﴿. Ta có m² = 4k² + 4k + 1 => p+1 = 4k² + 4k + 1 => p = 4k² + 4k = 4k﴾k+1﴿ chia hết cho 4. Mâu thuẫn với ﴾*﴿ Vậy giả sử phản chứng là sai, tức là p+1 là số chính phương Ta chứng minh p‐1 là số chính phương: Ta có: p = 2.3.5… là số chia hết cho 3 => p‐1 có dạng 3k+2. Vì không có số chính phương nào có dạng 3k+2 nên p‐1 không là số chính phương . Vậy nếu p là tích n số nguyên tố đầu tiên thì p‐1 và p+1 không là số chính phương ﴾đpcm﴿ 

láo lớp 6 làm gì đã học số chính phương