K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 9 2019

\(M=x^3-2x^2+bx+ax^2-2ax+ab\)

\(=x^3+\left(a-2\right)x^2+\left(b-2a\right)x+ab\)

Để M và N có giá trị như nhau với mọi x thì:

\(\left\{{}\begin{matrix}a-2=0\\b-2a=0\\ab=8\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=4\end{matrix}\right.\)

22 tháng 9 2019

Cám ơn bạn !

17 tháng 6 2017

bạn phân tích vế đầu ra đi cái nào giống y hệt về phần biến thì ghép lại sau đó sử dung hệ số bất định là ra

7 tháng 9 2017

Ta có : N = x3 + 8 = x3 + 23 = (x + 2)(x2 - 2x + 4)

Mà : M = N 

Nên :  (x + 2)(x2 - 2x + 4) = (x + a)(x2 - 2x + b)

Vậy a = 2 ; b = 4

7 tháng 9 2019

a) \(\left(x+a\right)\left(x^2+bx+16\right)\)

\(=x\left(x^2+bx+16\right)+a\left(x^2+bx+16\right)\)

\(=x^3+bx^2+16x+ax^2+abx+16a\)

\(=x^3+\left(a+b\right)x^2+\left(16+ab\right)x+16a\)

b) Ta có: \(\hept{\begin{cases}M=x^3+\left(a+b\right)x^2+\left(16+ab\right)x+16a\\N=x^3-64\end{cases}}\)

Cân bằng hệ số: \(\hept{\begin{cases}a+b=0\\16+ab=0\\16a=-64\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-4\\4\end{cases}}\)

19 tháng 10 2019

c) Cách 1:

x^4+3x^3-x^2+ax+b x^2+2x-3 x^2+x x^4+2x^3-3x^2 - x^3+2x^2+ax+b x^3+2x^2-3x - (a+3)x+b

Để \(P\left(x\right)⋮Q\left(x\right)\)

\(\Leftrightarrow\left(a+3\right)x+b=0\)

\(\Leftrightarrow\hept{\begin{cases}a+3=0\\b=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-3\\b=0\end{cases}}\)

Vậy a=-3 và b=0 để \(P\left(x\right)⋮Q\left(x\right)\)

19 tháng 10 2019

a) 

  2n^2-n+2 2n+1 n-1 2x^2+n - -2n+2 -2n-1 - 3

Để \(2n^2-n+2⋮2n+1\)

\(\Leftrightarrow3⋮2n+1\)

\(\Leftrightarrow2n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Leftrightarrow n\in\left\{0;1;-2;-1\right\}\)

Vậy \(n\in\left\{0;1;-2;-1\right\}\)để \(2n^2-n+2⋮2n+1\)

Chọn B