K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2019

Ta có:\(B=x-4\sqrt{x}+10x-4x+1\)

\(=7x-4\sqrt{x}+1\)

\(=7\left(x-\frac{4}{7}\sqrt{x}+1\right)\)

\(=7\left(x-2.\frac{2}{7}\sqrt{x}+\frac{4}{49}-\frac{4}{49}+1\right)\)

\(=7\left[\left(\sqrt{x}-\frac{2}{7}\right)^2+\frac{45}{49}\right]\)

\(=7\left(\sqrt{x}-\frac{2}{7}\right)^2+\frac{45}{7}\)

Lại có:\(\left(\sqrt{x}-\frac{2}{7}\right)^2\ge0,\forall x\ge0\)

\(\Leftrightarrow7\left(\sqrt{x}-\frac{2}{7}\right)^2\ge0\)

\(\Leftrightarrow7\left(\sqrt{x}-\frac{2}{7}\right)^2+\frac{45}{7}\ge\frac{45}{7}\)

\(\Rightarrow min_B=\frac{45}{7}\) khi \(\sqrt{x}-\frac{2}{7}=0\Leftrightarrow\sqrt{x}=\frac{2}{7}\Leftrightarrow x=\frac{4}{49}\)

10 tháng 9 2019

Đề bạn sửa lại: \(B=x-4\sqrt{x}+10\)

Ta có: \(B=x-2\sqrt{x}.2+4+6=\left(\sqrt{x}-2\right)^2+6\)

Lại có: \(\left(\sqrt{x}-2\right)^2\ge0,\forall x\ge0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)^2+6\ge6\)

\(\Rightarrow Min_B=6\) khi \(\sqrt{x}-2=0\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)

12 tháng 4 2018

Ta có : 

\(x^2-4x+5=\left(x^2-2.2x+2^2\right)+1=\left(x-2\right)^2+1\ge1>0\)

Vậy đa thức \(x^2-4x+5\) vô nghiệm với mọi giá trị của x 

Chúc bạn học tốt ~ 

6 tháng 11 2016

bài 2

Ta có:

\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)

Trường hợp 1: \(x-102>0\Rightarrow x>102\)

\(2-x>0\Rightarrow x< 2\)

\(\Rightarrow102< x< 2\left(loại\right)\)

Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)

\(2-x< 0\Rightarrow x>2\)

\(\Rightarrow2< x< 102\left(nhận\right)\)

Vậy GTNN của A là -100 đạt được khi 2<x<102.

6 tháng 11 2016

trị tuyệt đối phải bằng dương chứ sao bằng âm được

22 tháng 2 2018

Để A đạt GTLN thì \(\frac{3}{4-x}\)phải đạt giá trị lớn nhất\(\Rightarrow\)4-x phải bé nhất và 4-x>0

\(\Rightarrow4-x=1\rightarrow x=3\)

thay vào ta đc A=3

B3

\(B=\frac{7-x}{4-x}=\frac{4-x+3}{4-x}=\frac{4-x}{4-x}+\frac{3}{4-x}\)\(=1+\frac{3}{4-x}\)

Để b đạt GTLn thì 3/4-x phải lớn nhất (làm tương tụ như bài 2 )

Vậy gtln của 3/4-x là 3 thay vào ta đc b=4

Lâm như bài 2 Gtln của\(\frac{3}{4-x}\)

22 tháng 2 2018

B1\(\frac{4x-3}{2x+1}=\frac{4x+2-5}{2x+1}=\frac{2.\left(2x+1\right)-5}{2x+1}\)\(=\frac{2.\left(2x+1\right)}{2x+1}-\frac{5}{2x+1}=2-\frac{5}{2x+1}\)

VÌ A\(\varepsilon Z\),2\(\varepsilon Z\)\(\Rightarrow\)\(\frac{5}{2x+1}\varepsilon Z\)\(\rightarrow2x+1\varepsilonƯ\left(5\right)\)={1;-1;5;-5}

\(\Rightarrow\)x={0;-1;23}

15 tháng 9 2019

B=x-4\(\sqrt{x}\)+10 (x≥0)

B=x-2.\(\sqrt{x}\).2+4+6

B=(\(\sqrt{x}\)-2)\(^2\)+6

Ta có \(\left(\sqrt{x}-2\right)^2\)≥0 với mọi x tm ĐKXĐ

<=> \(\left(\sqrt{x}-2\right)^2\)+6 ≥6

Dấu = xảy ra <=> ​​​\(\left(\sqrt{x}-2\right)^2=0\\ < =>\sqrt{x}-2=0\\ < =>\sqrt{x}=2\\ < =>x=4\left(tm\right)\)

​Vậy GTNN B=6 khi x=4

15 tháng 9 2016

T/C của gttđ là >= 0 nên 

a) GTNN = -4

b) GTLN = 2

c) GTNN = 2

9 tháng 5 2017

Ta có: (x + 2)4 \(\ge\)0 với mọi x

          |2y - 10| \(\ge\)0 với mọi y

=> (x + 2)4 + |2y - 10| \(\ge\)0

=> S = (x + 2)4 + |2y - 10| + 2017 \(\ge\)2017

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x+2\right)^4=0\\\left|2y-10\right|=0\end{cases}}\)<=>\(\hept{\begin{cases}x=-2\\y=5\end{cases}}\)

Vậy GTNN của S = 2017 tại x = -2 và y = 5

17 tháng 10 2017

hay ấy chi

20 tháng 5 2016

\(B=x+4\sqrt{x}\)   ĐKXĐ: \(x\ge0\)

Để B đạt GTNN thì \(x=0\) vì \(x\ge0\)

Vậy B đạt GTNN bằng 0 <=> \(x=0\)

20 tháng 5 2016

để biểu thức xác định thì cănx>=0=>x>=0

=>B min=0 khi x= 0

1 tháng 11 2020

\(P=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}-2}{\sqrt{x}-1}\)

ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)

\(=\frac{\sqrt{x}+\sqrt{x}-2}{\sqrt{x}-1}\)

\(=\frac{2\sqrt{x}-2}{\sqrt{x}-1}\)

\(=\frac{2\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=2\)

=> Với mọi \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)thì P = 2

Đề sai à --

5 tháng 11 2020

kkk. thế mới hỏi chứ. đề đấy: đố giải được

18 tháng 3 2018

mình không làm đc

22 tháng 11 2018

Không spam nha. Chương trình game xin tặng chương trình học online. Nhằm mục đích game được nhiều người chơi.

Thay mặt người đào tạo chương trình hôm nay : Có 200 suất học bỗng cho những học sinh tích cực hoạt động từ bây giờ ( Mỗi suất học bỗng là 100k). Nhận thưởng bằng cách vào google tìm kiếm.

Link như sau vào google hoặc cốc cốc để tìm kiếm:

https://lazi.vn/quiz/d/17912/game-lien-quan-mobile-ra-doi-vao-ngay-thang-nam-nao

Copy cũng được nha

Bạn vào nick này hack nick mình thu ib dưới vs nha giúp mk chuyện này