Tìm x để các biểu thức sau đạt giá trị nhỏ nhất , tìm GTNN đó
B = x−4√x+10x−4x+10
Giải đúng mk tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(x^2-4x+5=\left(x^2-2.2x+2^2\right)+1=\left(x-2\right)^2+1\ge1>0\)
Vậy đa thức \(x^2-4x+5\) vô nghiệm với mọi giá trị của x
Chúc bạn học tốt ~
bài 2
Ta có:
\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)
Trường hợp 1: \(x-102>0\Rightarrow x>102\)
\(2-x>0\Rightarrow x< 2\)
\(\Rightarrow102< x< 2\left(loại\right)\)
Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)
\(2-x< 0\Rightarrow x>2\)
\(\Rightarrow2< x< 102\left(nhận\right)\)
Vậy GTNN của A là -100 đạt được khi 2<x<102.
Để A đạt GTLN thì \(\frac{3}{4-x}\)phải đạt giá trị lớn nhất\(\Rightarrow\)4-x phải bé nhất và 4-x>0
\(\Rightarrow4-x=1\rightarrow x=3\)
thay vào ta đc A=3
B3
\(B=\frac{7-x}{4-x}=\frac{4-x+3}{4-x}=\frac{4-x}{4-x}+\frac{3}{4-x}\)\(=1+\frac{3}{4-x}\)
Để b đạt GTLn thì 3/4-x phải lớn nhất (làm tương tụ như bài 2 )
Vậy gtln của 3/4-x là 3 thay vào ta đc b=4
Lâm như bài 2 Gtln của\(\frac{3}{4-x}\)
B1\(\frac{4x-3}{2x+1}=\frac{4x+2-5}{2x+1}=\frac{2.\left(2x+1\right)-5}{2x+1}\)\(=\frac{2.\left(2x+1\right)}{2x+1}-\frac{5}{2x+1}=2-\frac{5}{2x+1}\)
VÌ A\(\varepsilon Z\),2\(\varepsilon Z\)\(\Rightarrow\)\(\frac{5}{2x+1}\varepsilon Z\)\(\rightarrow2x+1\varepsilonƯ\left(5\right)\)={1;-1;5;-5}
\(\Rightarrow\)x={0;-1;23}
B=x-4\(\sqrt{x}\)+10 (x≥0)
B=x-2.\(\sqrt{x}\).2+4+6
B=(\(\sqrt{x}\)-2)\(^2\)+6
Ta có \(\left(\sqrt{x}-2\right)^2\)≥0 với mọi x tm ĐKXĐ
<=> \(\left(\sqrt{x}-2\right)^2\)+6 ≥6
Dấu = xảy ra <=> \(\left(\sqrt{x}-2\right)^2=0\\ < =>\sqrt{x}-2=0\\ < =>\sqrt{x}=2\\ < =>x=4\left(tm\right)\)
Vậy GTNN B=6 khi x=4
T/C của gttđ là >= 0 nên
a) GTNN = -4
b) GTLN = 2
c) GTNN = 2
Ta có: (x + 2)4 \(\ge\)0 với mọi x
|2y - 10| \(\ge\)0 với mọi y
=> (x + 2)4 + |2y - 10| \(\ge\)0
=> S = (x + 2)4 + |2y - 10| + 2017 \(\ge\)2017
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x+2\right)^4=0\\\left|2y-10\right|=0\end{cases}}\)<=>\(\hept{\begin{cases}x=-2\\y=5\end{cases}}\)
Vậy GTNN của S = 2017 tại x = -2 và y = 5
\(B=x+4\sqrt{x}\) ĐKXĐ: \(x\ge0\)
Để B đạt GTNN thì \(x=0\) vì \(x\ge0\)
Vậy B đạt GTNN bằng 0 <=> \(x=0\)
\(P=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}-2}{\sqrt{x}-1}\)
ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
\(=\frac{\sqrt{x}+\sqrt{x}-2}{\sqrt{x}-1}\)
\(=\frac{2\sqrt{x}-2}{\sqrt{x}-1}\)
\(=\frac{2\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=2\)
=> Với mọi \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)thì P = 2
Đề sai à --
Không spam nha. Chương trình game xin tặng chương trình học online. Nhằm mục đích game được nhiều người chơi.
Thay mặt người đào tạo chương trình hôm nay : Có 200 suất học bỗng cho những học sinh tích cực hoạt động từ bây giờ ( Mỗi suất học bỗng là 100k). Nhận thưởng bằng cách vào google tìm kiếm.
Link như sau vào google hoặc cốc cốc để tìm kiếm:
https://lazi.vn/quiz/d/17912/game-lien-quan-mobile-ra-doi-vao-ngay-thang-nam-nao
Copy cũng được nha
Bạn vào nick này hack nick mình thu ib dưới vs nha giúp mk chuyện này
Ta có:\(B=x-4\sqrt{x}+10x-4x+1\)
\(=7x-4\sqrt{x}+1\)
\(=7\left(x-\frac{4}{7}\sqrt{x}+1\right)\)
\(=7\left(x-2.\frac{2}{7}\sqrt{x}+\frac{4}{49}-\frac{4}{49}+1\right)\)
\(=7\left[\left(\sqrt{x}-\frac{2}{7}\right)^2+\frac{45}{49}\right]\)
\(=7\left(\sqrt{x}-\frac{2}{7}\right)^2+\frac{45}{7}\)
Lại có:\(\left(\sqrt{x}-\frac{2}{7}\right)^2\ge0,\forall x\ge0\)
\(\Leftrightarrow7\left(\sqrt{x}-\frac{2}{7}\right)^2\ge0\)
\(\Leftrightarrow7\left(\sqrt{x}-\frac{2}{7}\right)^2+\frac{45}{7}\ge\frac{45}{7}\)
\(\Rightarrow min_B=\frac{45}{7}\) khi \(\sqrt{x}-\frac{2}{7}=0\Leftrightarrow\sqrt{x}=\frac{2}{7}\Leftrightarrow x=\frac{4}{49}\)
Đề bạn sửa lại: \(B=x-4\sqrt{x}+10\)
Ta có: \(B=x-2\sqrt{x}.2+4+6=\left(\sqrt{x}-2\right)^2+6\)
Lại có: \(\left(\sqrt{x}-2\right)^2\ge0,\forall x\ge0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)^2+6\ge6\)
\(\Rightarrow Min_B=6\) khi \(\sqrt{x}-2=0\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)