417+418+419+420+417x 995. Chứng minh rằng A chia hết cho 9.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*) Chứng minh A ⋮ 5
Ta có:
A = 4¹⁹ + 4¹⁸ + ... + 4² + 4 + 1
= (4¹⁹ + 4¹⁸) + ... + (4³ + 4²) + (4 + 1)
= 4¹⁸.(4 + 1) + ... + 4².(4 + 1) + (4 + 1)
= 4¹⁸.5 + ... + 4².5 + 5
= 5(4¹⁸ + ... + 4² + 1) ⋮ 5
Vậy A ⋮ 5
*) Chứng minh A ⋮ 17
Ta có:
4¹⁹ + 4¹⁸ + ... + 4² + 4 + 1
= 4¹⁹ + 4¹⁸ + 4¹⁷ + 4¹⁶ + ... + 4³ + 4² + 4 + 1
= (4¹⁹ + 4¹⁸ + 4¹⁷ + 4¹⁶) + ... + (4³ + 4² + 4 + 1)
= 4¹⁶(4³ + 4² + 4 + 1) + ... + (4³ + 4² + 4 + 1)
= 4¹⁶.85 + ... + 85
= 85.(4¹⁶ + ... + 1) ⋮ 17 (vì 85 ⋮ 17)
Vậy A ⋮ 17
A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + (4^7 + 4^8 + 4^9 + 4^10 + 4^11 + 4^12) + (4^13 + 4^14 + 4^15 + 4^16 + 4^17 + 4^18) + (4^19 + 4^20 + 4^21 + 4^22 + 4^23 + 4^24)
A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^6(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^12(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^18(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6)
A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6).(1+4^6+4^12+4^18)
A = 5460.(1+4^6+4^12+4^18)
A = 420 . 13(1+4^6+4^12+4^18) => A chia hết cho 420
A = 20.21.13(1+4^6+4^12+4^18) => A chia hết cho 20 ; 21
\(A=\left(4+4^2\right)+.......+\left(4^{23}+4^{24}\right)\)
\(A=20.1+20.2^4+.......+20.2^{24}\)
\(A=20.\left(1+2^4+..........+2^{24}\right)\)
Vậy A chia hết cho 20
\(A=\left(4+4^2+4^3\right)+........+\left(4^{22}+4^{23}+4^{24}\right)\)
\(A=4.21+4^4.21+......+4^{20}.21\)
\(A=21.\left(1+4^4+......+4^{20}\right)\)
Vậy A chia hết cho 21
\(A=\left(4+4^2+......+4^6\right)+.........+\left(4^{19}+4^{20}+4^{21}+4^{22}+4^{23}+4^{24}\right)\)\(A=13.420+4^6.13.420+........+4^{18}.13.420\)
\(A=420.13.\left(1+4^6+4^{12}+4^{18}\right)\)
Vậy A chia hết cho 420
Vì A bằng tổng các lũy thừa của 4
=> A chia hết cho 4
Có A = ( 4 + 4^2 + 4^3 ) + ( 4^4 + 4^5 + 4^6 ) + ... + ( 4^2008 + 4^2009 + 4^2010 )
A = 4( 1 + 4 + 4^2 ) + 4^4( 1 + 4 + 4^2 ) + ... + 4^2008( 1 + 4 + 4^2 )
A = 4.21 + 4^4 . 21 + ... + 4^2008 . 21
A = 21( 4 + 4^4 + ... + 4^2008 )
=> A chia hết cho 21
=> A chia hết cho 3 , 7
Có A = ( 4 + 4^2 ) + ( 4^3 + 4^4 ) + ... + ( 4^2009 + 4^2010 )
A = 4( 1 + 4 ) + 4^3( 1 + 4 ) + ... + 4^2009( 1 + 4 )
A = 4 . 5 + 4^3 . 5 + ... + 4^2009 . 5
A = 5( 4 + 4^3 + ...+ 4^2009 )
=> A chia hết cho 5
Mà 420 = 3 . 4 . 5 . 7
=> A chia hết cho 420 ( vì A chia hết cho 3 , 4 , 5 , 7 )