K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác AEHF có

góc AEH=góc AFH=góc FAE=90 độ

nên AEHF là hình chữ nhật

=>AH=EF

b: góc IFE=90 độ

=>góc IFH+góc EFH=90 độ

=>góc IFH+góc AHF=90 độ

=>góc IFH=góc IHF

=>IH=IF và góc IFC=góc ICF

=>IH=IC

=>I là trung điểm của HC

Xét ΔHAC có HO/HA=HI/HC

nên OI//AC và OI=AC/2

=>OI//AK và OI=AK

=>AOIK là hình bình hành

a) Xét tứ giác AEHF có 

\(\widehat{FAE}=90^0\)

\(\widehat{AFH}=90^0\)

\(\widehat{AEH}=90^0\)

Do đó: AEHF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Ta có: ΔEHB vuông tại E(gt)

mà EN là đường trung tuyến ứng với cạnh huyền HB(N là trung điểm của HB)

nên \(EN=\dfrac{HB}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

=>HB=HC

b: Ta có: ΔAHB=ΔAHC

=>\(\widehat{BAH}=\widehat{CAH}\)

Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

\(\widehat{DAH}=\widehat{EAH}\)

Do đó: ΔADH=ΔAEH

=>AD=AE và HD=HE

Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

nên DE//BC

c: Ta có: HD=HF

mà H nằm giữa D và F

nên H là trung điểm của DF

Xét ΔEDF có

EH là đường trung tuyến

\(EH=\dfrac{DF}{2}\)

Do đó: ΔEDF vuông tại E

16 tháng 2 2017

XÉT TAM GIÁC AHB VÀ TAM GIÁC AHC CÓ

AB=AC(GT)

AH CHUNG

GÓC AHB = GÓC AHC

=>TAM GIÁC AHB=TAM GIÁC AHC (CGC)

C,XÉT TAM GIÁC AHE VÀ TAM GIÁC AFH CÓ

AH CHUNG

GÓC AEH=GÓC AFH =90*

A1=A2

=>TAM GIÁC AHE=TAM GIÁC AFH (GCG)

=>HE=HF (CẠNH TƯƠNG ỨNG) A B C H

17 tháng 6 2021

a, xét \(\Delta ABC\) vuông tại A áp dụng hệ thức lượng\(=>AC^2=CH.BC=>HC=\dfrac{AC^2}{BC}=\dfrac{12^2}{15}=9,6cm\)

\(=>HB=BC-HC=15-9,6=5,4cm\)

áp dụng Pytago trong \(\Delta AHC\) vuông tại H

\(=>HA=\sqrt{AC^2-HC^2}=\sqrt{12^2-9,6^2}=7,2cm\)

\(b,\) do E,F là hình  chiếu vuông góc của H lần lượt lên AB, AC

\(=>\left\{{}\begin{matrix}EH\perp AB\\HF\perp AC\end{matrix}\right.\) mà \(\Delta AHB\) và \(\Delta AHC\) lần lượt vuông góc tại H

theo hệ thức lượng

\(=>\left\{{}\begin{matrix}AH^2=AE.AB\\AH^2=AF.AC\end{matrix}\right.\)=>\(AE.AB=AF.AC\)

c, do E,F là hình  chiếu vuông góc của H lần lượt lên AB, AC

=> tứ giác EHFA là hình chữ nhật\(=>AE=HF< =>HF^2=AE^2\)

áp dụng pytago trong \(\Delta EHA\) vuông tại E

\(=>HE^2+AE^2=AH^2< =>HE^2+HF^2=AH^2\)(1)

theo hệ thức lượng trong tam giác ABC vuông tại A đường cao AH

\(=>AH^2=HB.HC\left(2\right)\)

(1)(2)=>\(HE^2+HF^2=HB.HC\)